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5.1 Introduction
Sometimes machine parts are subjected to pure

torsion or bending or combination of both torsion and
bending stresses. We shall now discuss these stresses in
detail in the following pages.

5.2 Torsional Shear Stress
When a machine member is subjected to the action

of two equal and opposite couples acting in parallel planes
(or torque or twisting moment), then the machine member
is said to be subjected to torsion. The stress set up by torsion
is known as torsional shear stress. It is zero at the centroidal
axis and maximum at the outer surface.

Consider a shaft fixed at one end and subjected to a
torque (T) at the other end as shown in Fig. 5.1. As a result
of this torque, every cross-section of the shaft is subjected
to torsional shear stress. We have discussed above that the
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torsional shear stress is zero at the centroidal axis and maximum at the outer surface. The
maximum torsional shear stress at the outer surface of the shaft may be obtained from the following
equation:

.T C

r J l

τ θ= = ...(i)

where τ = Torsional shear stress induced at the outer surface of the shaft or maximum
shear stress,

r = Radius of the shaft,
T = Torque or twisting moment,
J = Second moment of area of the section about its polar axis or polar moment of

inertia,
C = Modulus of rigidity for the shaft material,
l = Length of the shaft, and
θ = Angle of twist in radians on a length l.

Fig. 5.1. Torsional shear stress.

The equation (i) is known as torsion equation. It is based on the following assumptions:
1. The material of the shaft is uniform throughout.
2. The twist along the length of the shaft is uniform.
3. The normal cross-sections of the shaft, which were plane and circular before twist, remain

plane and circular after twist.
4. All diameters of the normal cross-section which were straight before twist, remain straight

with their magnitude unchanged, after twist.
5. The maximum shear stress induced in the shaft due to the twisting moment does not exceed

its elastic limit value.
Notes : 1. Since the torsional shear stress on any cross-section normal to the axis is directly proportional to the
distance from the centre of the axis, therefore the torsional shear stress at a distance x from the centre of the shaft
is given by

x

x r

τ τ=

2. From equation (i), we know that

T

J r

τ= or
J

T
r

= τ ×

For a solid shaft of diameter (d), the polar moment of inertia,

J = IXX + IYY = 
4 4 4

64 64 32
d d d

π π π× + × = ×

∴ T =
4 32

32 16
d d

d

π πτ × × × = × τ ×
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In case of a hollow shaft with external diameter (do) and internal diameter (di), the polar moment of
inertia,

J =
32

π
 [(do)

4 – (di)
4] and r = 

2
od

∴ T =
4 4

4 4
4

2 ( ) – ( )
[( ) – ( ) ]

32 16
o i

o
o o

d d
d d

d d

⎡ ⎤π πτ × × = × τ ⎢ ⎥
⎣ ⎦

=
3 4( ) (1 – )

16 od k
π × τ ... Substituting, i

o

d
k

d
⎛ ⎞=⎜ ⎟
⎝ ⎠

3. The expression (C × J) is called torsional rigidity of the shaft.

4. The strength of the shaft means the maximum torque transmitted by it. Therefore, in order to design a
shaft for strength, the above equations are used. The power transmitted by the shaft (in watts) is given by

P =
2 .

.
60

N T
T

π = ω ...
2

60

Nπ⎛ ⎞ω =⎜ ⎟
⎝ ⎠
Q

where T = Torque transmitted in N-m, and

ω = Angular speed in rad/s.

Example 5.1. A shaft is transmitting 100 kW at 160 r.p.m. Find a suitable diameter for the
shaft, if the maximum torque transmitted exceeds the mean by 25%. Take maximum allowable shear
stress as 70 MPa.

Solution. Given : P = 100 kW = 100 × 103 W ; N = 160 r.p.m ; Tmax = 1.25 Tmean ; τ = 70 MPa
= 70 N/mm2

Let       Tmean =  Mean torque transmitted by the shaft in N-m, and

             d   = Diameter of the shaft in mm.

We know that the power transmitted (P),

100 × 103 =
2 . 2 160

60 60
mean meanN T Tπ π × ×

=  = 16.76 Tmean

∴ Tmean = 100 × 103/16.76 = 5966.6 N-m

A Helicopter propeller shaft has to bear torsional, tensile, as well as bending stresses.

Note : This picture is given as additional information and is not a direct example of the current chapter.
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and maximum torque transmitted,

Tmax = 1.25 × 5966.6 = 7458 N-m = 7458 × 103 N-mm

We know that maximum torque (Tmax),

7458 × 103 =
16

π
 × τ × d 3 = 

16

π
 × 70 × d 3 = 13.75 d 3

∴ d 3 = 7458 × 103/13.75 = 542.4 × 103  or  d = 81.5 mm Ans.
Example 5.2. A steel shaft 35 mm in diameter and 1.2 m long held rigidly at one end has a

hand wheel 500 mm in diameter keyed to the other end. The modulus of rigidity of steel is 80 GPa.

1. What load applied to tangent to the rim of the wheel produce a torsional shear of 60 MPa?

2. How many degrees will the wheel turn when this load is applied?

Solution. Given : d = 35 mm or r = 17.5 mm ; l = 1.2 m = 1200 mm ; D = 500 mm or
R = 250 mm ; C = 80 GPa = 80 kN/mm2 = 80 × 103 N/mm2 ; τ = 60 MPa = 60 N/mm2

1. Load applied to the tangent to the rim of the wheel
Let W   = Load applied (in newton) to tangent to the rim of the wheel.

We know that torque applied to the hand wheel,

T = W.R = W × 250 = 250 W N-mm

and polar moment of inertia of the shaft,

J =
32

π
 × d 4 = 

32

π
 (35)4 = 147.34 × 103 mm4

We know that
T

J r

τ=

∴ 3

250 60

17.5147.34 10

W =
×

or
360 147.34 10

2020 N
17.5 250

W
× ×= =

×
 Ans.

2. Number of degrees which the wheel will turn when load W = 2020 N is applied
Let                                θ = Required number of degrees.

We know that  
.T C

J l

θ=

∴ θ =
3 3

. 250 2020 1200
0.05

. 80 10 147.34 10

T l

C J

× ×= = °
× × ×

 Ans.

Example 5.3. A shaft is transmitting 97.5 kW at 180 r.p.m. If the allowable shear stress in the
material is 60 MPa, find the suitable diameter for the shaft. The shaft is not to twist more that 1° in
a length of 3 metres. Take C = 80 GPa.

Solution. Given : P = 97.5 kW = 97.5 × 103 W ; N = 180 r.p.m. ; τ = 60 MPa = 60 N/mm2 ;
θ = 1° = π / 180 = 0.0174 rad ; l = 3 m = 3000 mm ; C = 80 GPa = 80 × 109 N/m2 = 80 × 103 N/mm2

Let     T = Torque transmitted by the shaft in N-m, and

   d = Diameter of the shaft in mm.

We know that the power transmitted by the shaft (P),

97.5 × 103 =
2 . 2 180

60 60

N T Tπ π × ×=  = 18.852 T

∴ T = 97.5 × 103/18.852 = 5172 N-m = 5172 × 103 N-mm

Now let us find the diameter of the shaft based on the strength and stiffness.
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A tunnel-boring machine can cut through rock at up to one kilometre a month. Powerful hydraulic
rams force the machine’s cutting head fowards as the rock is cut away.

Archimedean screw lifts soil onto
conveyer belt

Powerful hydraulic rams
push cutting head forward

Control cab houses
operator

Conveyor belt
carries soil away

Cutting head
roller

Cutting teeth made
fo tungsten carbide

1. Considering strength of the shaft
We know that the torque transmitted (T),

5172 × 103 =
16

π
 × τ × d3 = 

16

π
 × 60 × d3 = 11.78 d3

∴ d 3 = 5172 × 103/11.78 = 439 × 103  or  d = 76 mm ...(i)
2.  Considering stiffness of the shaft

Polar moment of inertia of the shaft,

J =
32

π
 × d4 = 0.0982 d4

We know that
.T C

J l

θ=

3 3

4

5172 10 80 10 0.0174

30000.0982 d

× × ×=   or   
6

4

52.7 10
0.464

d

× =

∴ d 4  = 52.7 × 106/0.464 = 113.6 × 106  or  d = 103 mm ...(ii)
Taking larger of the two values, we shall provide d = 103 say 105 mm Ans.
Example 5.4. A hollow shaft is required to transmit 600 kW at 110 r.p.m., the maximum torque

being 20% greater than the mean. The shear stress is not to exceed 63 MPa and twist in a length of
3 metres not to exceed 1.4 degrees. Find the external diameter of the shaft, if the internal diameter to
the external diameter is 3/8. Take modulus of rigidity as 84 GPa.

Solution. Given : P = 600 kW = 600 × 103 W ; N = 110 r.p.m. ; Tmax = 1.2 Tmean ; τ = 63 MPa
= 63 N/mm2 ; l = 3 m = 3000 mm ; θ = 1.4 × π / 180 = 0.024 rad ; k = di / do = 3/8 ; C = 84 GPa
= 84 × 109 N/m2 = 84 × 103 N/mm2

Let            Tmean  =  Mean torque transmitted by the shaft,

do   =  External diameter of the shaft, and

di    =  Internal diameter of the shaft.

Note : This picture is given as additional information and is not a direct example of the current chapter.
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We know that power transmitted by the shaft (P),

600 × 103 =
2 . 2 110

60 60
mean meanN T Tπ π × ×

=  = 11.52 Tmean

∴ Tmean = 600 × 103/11.52 = 52 × 103 N-m = 52 × 106 N-mm

and maximum torque transmitted by the shaft,

Tmax = 1.2 Tmean = 1.2 × 52 × 106 = 62.4 × 106 N-mm

Now let us find the diameter of the shaft considering strength and stiffness.

1. Considering strength of the shaft
We know that maximum torque transmitted by the shaft,

Tmax =
16

π
 × τ (do)

3 (1 – k4)

62.4 × 106 =
4

3 33
63 ( ) 1 – 12.12 ( )

16 8o od d
⎡ ⎤π ⎛ ⎞× × =⎢ ⎥⎜ ⎟

⎝ ⎠⎣ ⎦
∴ (do)

3 = 62.4 × 106/12.12 = 5.15 × 106  or  do = 172.7 mm ...(i)
2.  Considering stiffness of the shaft

We know that polar moment of inertia of a hollow circular section,

J =
4

4 4 4( ) – ( ) ( ) 1 –
32 32

i
o i o

o

d
d d d

d

⎡ ⎤π π ⎛ ⎞⎡ ⎤ = ⎢ ⎥⎣ ⎦ ⎜ ⎟
⎢ ⎥⎝ ⎠⎣ ⎦

=
4

4 4 4 43
( ) (1 – ) ( ) 1 – 0.0962 ( )

32 32 8o o od k d d
⎡ ⎤π π ⎛ ⎞= =⎢ ⎥⎜ ⎟

⎝ ⎠⎣ ⎦
We also know that

.T C

J l

θ=

6 3

4

62.4 10 84 10 0.024

30000.0962 ( )od

× × ×=   or   
6

4

648.6 10
0.672

( )od

× =

∴ (do)
4 = 648.6 × 106/0.672 = 964 × 106   or  do = 176.2 mm ...(ii)

Taking larger of the two values, we shall provide

do = 176.2 say 180 mm Ans.

5.3 Shafts in Series and Parallel
When two shafts of different diameters are connected together to form one shaft, it is then

known as composite shaft. If the driving torque is applied at one end and the resisting torque at the
other end, then the shafts are said to be connected in series as shown in Fig. 5.2 (a). In such cases,
each shaft transmits the same torque and the total angle of twist is equal to the sum of the angle of
twists of the two shafts.

Mathematically, total angle of twist,

θ = θ1 + θ2 = 1 2

1 1 2 2

. .T l T l

C J C J
+

If the shafts are made of the same material, then C1 = C2 = C.

∴ θ = 1 2 1 2

1 2 1 2

. .T l T l l lT

CJ CJ C J J
⎡ ⎤+ = +⎢ ⎥
⎣ ⎦
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Fig. 5.2. Shafts in series and parallel.

When the driving torque (T) is applied at the junction of the two shafts, and the resisting torques
T1 and T2 at the other ends of the shafts, then the shafts are said to be connected in parallel, as shown
in Fig. 5.2 (b). In such cases, the angle of twist is same for both the shafts, i.e.

θ1 = θ2

or 1 1 2 2

1 1 2 2

T l T l

C J C J
= or 1 2 1 1

2 1 2 2

T l C J

T l C J
= × ×

and T = T1 + T2

If the shafts are made of the same material, then C1 = C2.

∴ 1 2 1

2 1 2

T l J

T l J
= ×

Example 5.5.  A steel shaft ABCD having a total length of 3.5 m consists of three lengths
having different sections as follows:

AB is hollow having outside and inside diameters of 100 mm and 62.5 mm respectively, and BC
and CD are solid. BC has a diameter of 100 mm and CD has a diameter of 87.5 mm. If the angle of
twist is the same for each section, determine the length of each section. Find the value of the applied
torque and the total angle of twist, if the maximum shear stress in the hollow portion is 47.5 MPa and
shear modulus, C = 82.5 GPa.

Solution. Given: L = 3.5 m ; do = 100 mm ; di = 62.5 mm ; d2 = 100 mm ; d3 = 87.5 mm ;
τ = 47.5 MPa = 47.5 N/mm2 ; C = 82.5 GPa = 82.5 × 103 N/mm2

The shaft ABCD is shown in Fig. 5.3.

Fig. 5.3

Length of each section
Let                  l1,  l2 and l3 = Length of sections AB, BC and CD respectively.

We know that polar moment of inertia of the hollow shaft AB,

J1 =
32

π
 [(do)

4 – (di)
4] = 

32

π
 [(100)4 – (62.5)4] = 8.32 × 106 mm4

Polar moment of inertia of the solid shaft BC,

J2 =
32

π
 (d2)4 = 

32

π
 (100)4 = 9.82 × 106 mm4
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and polar moment of inertia of the solid shaft CD,

J3 =
32

π
 (d3)4 = 

32

π
 (87.5)4 = 5.75 × 106 mm4

We also know that angle of twist,

θ = T . l / C . J

Assuming the torque T and shear modulus C to
be same for all the sections, we have

Angle of twist for hollow shaft AB,

θ1 = T . l1 / C . J1

Similarly, angle of twist for solid shaft BC,

θ2 = T . l2 / C . J2

and angle of twist for solid shaft CD,
θ3 = T . l3 / C . J3

Since the angle of twist is same for each section,
therefore

θ1 = θ2

1

1

.

.

T l

C J
= 2

2

.

.

T l

C J
  or  

6
1 1

6
2 2

8.32 10
0.847

9.82 10

l J

l J

×= = =
×

...(i)

Also θ1 = θ3

1

1

.

.

T l

C J
= 3

3

.

.

T l

C J
  or  

6
1 1

6
3 3

8.32 10
1.447

5.75 10

l J

l J

×= = =
×

...(ii)

We know that l1 + l2 + l3 = L = 3.5 m = 3500 mm

32
1

1 1

1 3500
ll

l
l l

⎛ ⎞+ + =⎜ ⎟
⎝ ⎠

1
1 1

1 3500
0.847 1.447

l
⎛ ⎞+ + =⎜ ⎟
⎝ ⎠

l1 × 2.8717 = 3500  or  l1 = 3500 / 2.8717 = 1218.8 mm Ans.
From equation (i),

l2 = l1 / 0.847 = 1218.8 / 0.847 = 1439 mm Ans.
and from equation (ii), l3 = l1 / 1.447 = 1218.8 / 1.447 = 842.2 mm Ans.
Value of the applied torque

We know that the maximum shear stress in the hollow portion,
τ = 47.5 MPa = 47.5 N/mm2

For a hollow shaft, the applied torque,

T =
4 4 4 4( ) – ( ) (100) – (62.5)

47.5
16 16 100

o i

o

d d

d

⎡ ⎤ ⎡ ⎤π π× τ = ×⎢ ⎥ ⎢ ⎥
⎣ ⎦⎣ ⎦

= 7.9 × 106 N-mm = 7900 N-m Ans.
Total angle of twist

When the shafts are connected in series, the total angle of twist is equal to the sum of angle of
twists of the individual shafts. Mathematically, the total angle of twist,

θ = θ1 + θ2 + θ3

Machine part of a jet engine.
Note : This picture is given as additional information
and is not a direct example of the current chapter.
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= 3 31 2 1 2

1 2 3 1 2 3

.. .

. . .

T l lT l T l l lT

C J C J C J C J J J
⎡ ⎤+ + = + +⎢ ⎥
⎣ ⎦

=
6

3 6 6 6

7.9 10 1218.8 1439 842.2

82.5 10 8.32 10 9.82 10 5.75 10

× ⎡ ⎤+ +⎢ ⎥× × × ×⎣ ⎦

=
6

3 6

7.9 10

82.5 10 10

×
× ×

 [146.5 + 146.5 + 146.5] = 0.042 rad

= 0.042 × 180 / π = 2.406° Ans.

5.4 Bending Stress in Straight Beams
In engineering practice, the machine parts of structural members may be subjected to static or

dynamic loads which cause bending stress in the sections besides other types of stresses such as
tensile, compressive and shearing stresses.

Consider a straight beam subjected to a bending moment M as shown in Fig. 5.4. The following
assumptions are usually made while deriving the bending formula.

1. The material of the beam is perfectly homogeneous (i.e. of the same material throughout)
and isotropic (i.e. of equal elastic properties in all directions).

2. The material of the beam obeys Hooke’s law.
3. The transverse sections (i.e. BC or GH) which were plane before bending, remain plane

after bending also.
4. Each layer of the beam is free to expand or contract, independently, of the layer, above or

below it.
5. The Young’s modulus (E) is the same in tension and compression.
6. The loads are applied in the plane of bending.

Fig. 5.4. Bending stress in straight beams.

A little consideration will show that when a beam is subjected to the bending moment, the fibres
on the upper side of the beam will be shortened due to compression and those on the lower side will
be elongated due to tension. It may be seen that somewhere between the top and bottom fibres there
is a surface at which the fibres are neither shortened nor lengthened. Such a surface is called neutral
surface. The intersection of the neutral surface with any normal cross-section of the beam is known
as neutral axis. The stress distribution of a beam is shown in Fig. 5.4. The bending equation is given
by

M

I
=

E

y R

σ =

where M = Bending moment acting at the given section,
σ = Bending stress,
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Parts in  a machine.

I = Moment of inertia of the cross-section about the neutral axis,
y = Distance from the neutral axis to the extreme fibre,
E = Young’s modulus of the material of the beam, and
R = Radius of curvature of the beam.

From the above equation, the bending stress is given by

σ =
E

y
R

×

Since E and R are constant, therefore within elastic limit, the stress at any point is directly
proportional to y, i.e. the distance of the point from the neutral axis.

Also from the above equation, the bending stress,

σ =
/

M M M
y

I I y Z
× = =

The ratio I/y is known as section modulus and is denoted by Z.
Notes : 1. The neutral axis of a
section always passes through its
centroid.

2. In case of symmetrical
sections such as circular, square or
rectangular, the neutral axis passes
through its geometrical centre and
the distance of extreme fibre from
the neutral axis is y = d / 2, where d
is the diameter in case of circular
section or depth in case of square or
rectangular section.

3. In case of unsymmetrical
sections such as L-section or T-
section, the neutral axis does not
pass through its geometrical centre.
In such cases, first of all the centroid
of the section is calculated and then
the distance of the extreme fibres for
both lower and upper side of the
section is obtained. Out of these two values, the bigger value is used in bending equation.

Table 5.1 (from pages 130 to 134) shows the properties of some common cross-sections.

This is the first revolver produced in a production line using interchangeable parts.

Note : This picture is given as additional information and is not a direct example of the current chapter.

Barrel
Blade foresight

TriggerVulcanized
rubber handle

Revolving
chamber holds
bullets

Hammer strikes cartridge to make it
explode
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Example 5.6. A pump lever rocking shaft is shown in Fig. 5.5. The pump lever exerts forces of

25 kN and 35 kN concentrated at 150 mm and 200 mm from the left and right hand bearing respec-
tively. Find the diameter of the central portion of the shaft, if the stress is not to exceed 100 MPa.

Fig. 5.5

Solution. Given : σb = 100 MPa = 100 N/mm2

Let RA and RB = Reactions at A and B respectively.

Taking moments about A, we have

RB × 950 = 35 × 750 + 25 × 150 = 30 000

∴ RB = 30 000 / 950 = 31.58 kN = 31.58 × 103 N

and RA = (25 + 35) – 31.58 = 28.42 kN = 28.42 × 103 N

∴ Bending moment at C

= RA × 150 = 28.42 × 103 × 150 = 4.263 × 106 N-mm

and bending moment at D = RB × 200 = 31.58 × 103 × 200 = 6.316 × 106 N-mm

We see that the maximum bending moment
is at D, therefore maximum bending moment, M
= 6.316 × 106 N-mm.

Let d = Diameter of the
shaft.

∴ Section modulus,

Z =
32

π
 × d 3

= 0.0982 d 3

We know that bending stress (σb),

100 =
M

Z

6 6

3 3

6.316 10 64.32 10

0.0982

× ×= =
d d

∴ d 3 = 64.32 × 106/100 = 643.2 × 103 or  d = 86.3 say 90 mm Ans.
Example 5.7. An axle 1 metre long supported in bearings at its ends carries a fly wheel weighing

30 kN at the centre. If the stress (bending) is not to exceed 60 MPa, find the diameter of the axle.

Solution. Given : L = 1 m = 1000 mm ; W = 30 kN = 30 × 103 N ; σb = 60 MPa = 60 N/mm2

The axle with a flywheel is shown in Fig. 5.6.

Let d = Diameter of the axle in mm.

The picture shows a method where sensors are
used to measure torsion
Note : This picture is given as additional information
and is not a direct example of the current chapter.
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∴ Section modulus,

Z =
32

π
 × d3 = 0.0982 d3

Maximum bending moment at the centre of the axle,

M =
3. 30 10 1000

4 4

W L × ×=  = 7.5 × 106 N-mm

We know that bending stress (σb),

60 =
6 6

3 3

7.5 10 76.4 10

0.0982

M

Z d d

× ×= =

∴ d 3 =  76.4 × 106/60 = 1.27 × 106  or  d = 108.3 say 110 mm Ans.
Example 5.8. A beam of uniform rectangular cross-section is fixed at one end and carries an

electric motor weighing 400 N at a distance of 300 mm
from the fixed end. The maximum bending stress in the
beam is 40 MPa. Find the width and depth of the beam,
if depth is twice that of width.

Solution. Given: W = 400 N ; L = 300 mm ;
σb = 40 MPa = 40 N/mm2 ; h = 2b

The beam is shown in Fig. 5.7.

Let b = Width of the beam in mm, and

h = Depth of the beam in mm.

∴ Section modulus,

Z =
2 2 3

3. (2 ) 2
mm

6 6 3

b h b b b= =

Maximum bending moment (at the fixed end),

M = W.L = 400 × 300 = 120 × 103 N-mm

We know that bending stress (σb),

40 =
3 3

3 3

120 10 3 180 10

2

M

Z b b

× × ×= =

∴ b3 = 180 × 103/40 = 4.5 × 103  or  b = 16.5 mm Ans.

and h = 2b = 2 × 16.5 = 33 mm Ans.

Example 5.9. A cast iron pulley transmits 10 kW at 400 r.p.m. The diameter of the pulley is 1.2
metre and it has four straight arms of elliptical cross-section, in which the major axis is twice the
minor axis. Determine the dimensions of the arm if the allowable bending stress is 15 MPa.

Solution. Given : P = 10 kW = 10 × 103 W ; N = 400 r.p.m ; D = 1.2 m = 1200 mm or
R = 600 mm ; σb = 15 MPa = 15 N/mm2

Let T = Torque transmitted by the pulley.

We know that the power transmitted by the pulley (P),

10 × 103 =
2 . 2 400

42
60 60

N T T
T

π π × ×= =

∴ T = 10 × 103/42 = 238 N-m = 238 × 103 N-mm

Fig. 5.7

Fig. 5.6
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Since the torque transmitted is the product of the tangential load and the radius of the pulley,

therefore tangential load acting on the pulley

=
3238 10

396.7 N
600

T

R

×= =

Since the pulley has four arms, therefore tangential load on each arm,

W = 396.7/4 = 99.2 N

and maximum bending moment on the arm,

M = W × R = 99.2 × 600 = 59 520 N-mm

Let 2b = Minor axis in mm, and

2a = Major axis in mm = 2 × 2b = 4b ...(Given)

∴ Section modulus for an elliptical cross-section,

Z =
4

π
 × a2b = 

4

π
 (2b)2 × b = π b3 mm3

We know that bending stress (σb),

15 = 3 3

59 520 18 943M

Z b b
= =

π
or b3 = 18 943/15 = 1263   or   b = 10.8 mm

∴    Minor axis, 2b = 2 × 10.8 = 21.6 mm Ans.
and        major axis, 2a = 2 × 2b = 4 × 10.8 = 43.2 mm Ans.

5.5 Bending Stress in Curved Beams
We have seen in the previous article that for the straight beams, the neutral axis of the section

coincides with its centroidal axis and the stress distribution in the beam is linear. But in case of curved
beams, the neutral axis of the cross-section is shifted towards the centre of curvature of the beam
causing a non-linear (hyperbolic) distribution of stress, as shown in Fig. 5.8. It may be noted that the
neutral axis lies between the centroidal axis and the centre of curvature and always occurs within the
curved beams. The application of curved beam principle is used in crane hooks, chain links and
frames of punches, presses, planers etc.

Fig. 5.8. Bending stress in a curved beam.

Consider a curved beam subjected to a bending moment M, as shown in Fig. 5.8. In finding the
bending stress in curved beams, the same assumptions are used as for straight beams. The general
expression for the bending stress (σb) in a curved beam at any fibre at a distance y from the neutral



138    A Textbook of Machine Design

axis, is given by

σb =
. –n

M y

A e R y
⎛ ⎞
⎜ ⎟
⎝ ⎠

where M = Bending moment acting at the given section about the centroidal
axis,

A = Area of cross-section,
e = Distance from the centroidal axis to the neutral axis = R – Rn,
R = Radius of curvature of the centroidal axis,

Rn = Radius of curvature of the neutral axis, and
y = Distance from the neutral axis to the fibre under consideration. It is

positive for the distances towards the centre of curvature and
negative for the distances away from the centre of curvature.

Notes : 1. The bending stress in the curved beam is zero at a point other than at the centroidal axis.

2. If the section is symmetrical such as a circle, rectangle, I-beam with equal flanges, then the maximum
bending stress will always occur at the inside fibre.

3. If the section is unsymmetrical, then the maximum bending stress may occur at either the inside fibre
or the outside fibre. The maximum bending stress at the inside fibre is given by

σbi =
.

. .
i

i

M y

A e R
where yi = Distance from the neutral axis to the inside fibre = Rn – Ri , and

Ri = Radius of curvature of the inside fibre.

The maximum bending stress at the outside fibre is given by

σbo =
.

. .
o

o

M y

A e R

where yo = Distance from the neutral axis to the outside fibre = Ro – Rn, and

Ro = Radius of curvature of the outside fibre.

It may be noted that the bending stress at the inside fibre is tensile while the bending stress at the outside
fibre is compressive.

4. If the section has an axial load in addition to bending, then the axial or direct stress (σd) must be added
algebraically to the bending stress, in order to obtain the resultant stress on the section. In other words,

Resultant stress, σ = σd ± σb

The following table shows the values of Rn and R for various commonly used cross-sections in
curved beams.

Table 5.2. Values of Rn and R for various commonly used
cross-section in curved beams.

Section Values of Rn and R

log
n

o
e

i

h
R

R

R

=
⎛ ⎞
⎜ ⎟⎝ ⎠

2
= +i

h
R R
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Section Values of Rn and R

                                      
2

4

⎡ ⎤+⎣ ⎦= o i
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R R
R

                                       
2i
d

R R= +

2
–

log – ( – )
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⎝ ⎠=

⎛ ⎞ ⎛ ⎞
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i o
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i o o i o

e i o
i

b b
h
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b R b R R

b b
h R
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3 ( )

+= +
+

i o
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h b b
R R

b b

1
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log –

×
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i o o

e i
i

b h
R

b R R
b

h R
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= +i
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R R

( – )( ) .
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log log .log

–
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e e e
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b t t t t h
R

R t R R t
b t

R R t R t

221 1 1
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2 2 2
. ( – ) ( )

+ +
= +
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i o
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R R
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Section Values of Rn and R

                                                      

( – ) .

( – ) log .log
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+⎛ ⎞ ⎛ ⎞+⎜ ⎟ ⎜ ⎟
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i i
n

i i o
i e e

i i

t b t t h
R

R t R
b t t

R R

221 1
( – )

2 2
. ( – )

+
= +

+

i i

i
i i

h t t b t
R R

h t t b t

( – ) ( – ) .
–

log log log
–

+ +=
+⎛ ⎞ ⎛ ⎞ ⎛ ⎞+ +⎜ ⎟ ⎜ ⎟ ⎜ ⎟+⎝ ⎠ ⎝ ⎠ ⎝ ⎠

i i o o
n

i i o o o
i e e o e

i i i o o

t b t t b t t h
R

R t R t R
b t b

R R t R t

2 21 1 1
( – ) ( – ) ( – )

2 2 2
( – ) ( – ) .

+ +
= +

+ +

i i o o o

i
i i o o

h t t b t b t t h t
R R

t b t t b t t h

Example 5.10. The frame of a punch press is shown in Fig. 5.9. Find the stresses at the inner
and outer surface at section X-X of the frame, if W = 5000 N.

Solution. Given : W = 5000 N ; bi = 18 mm ; bo = 6 mm ; h = 40 mm ; Ri = 25 mm ;
Ro = 25 + 40 = 65 mm

We know that area of section at X-X,

               A = 
1

2
 (18 + 6) 40 = 480 mm2

The various distances are shown in Fig. 5.10.

We know that radius of curvature of the neutral
axis,

Rn = 2
–

log – ( – )

+⎛ ⎞
⎜ ⎟
⎝ ⎠

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

i o

i o o i o
e i o

i

b b
h

b R b R R
b b

h R

=

18 6
40

2
18 65 – 6 25 65

log – (18 – 6)
40 25e

+⎛ ⎞ ×⎜ ⎟
⎝ ⎠

× ×⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

=
480

38.83 mm
(25.5 0.9555) – 12

=
×

Fig. 5.9
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and radius of curvature of the centroidal axis,

R =
( 2 ) 40 (18 2 6)

25 mm
3 ( ) 3 (18 6)

i o
i

i o

h b b
R

b b

+ + ×+ = +
+ +

= 25 + 16.67 = 41.67 mm

Distance between the centroidal axis and neutral axis,

e = R – Rn = 41.67 – 38.83 = 2.84 mm

and the distance between the load and centroidal axis,

x = 100 + R = 100 + 41.67 = 141.67 mm

∴ Bending moment about the centroidal axis,

M = W.x = 5000 × 141.67 = 708 350 N-mm

The section at X-X is subjected to a direct tensile load of W = 5000 N and a bending moment of
M = 708 350 N-mm. We know that direct tensile stress at section X-X,

σt = 25000
10.42 N/mm 10.42 MPa

480

W

A
= = =

Fig. 5.10

Distance from the neutral axis to the inner surface,

yi = Rn – Ri = 38.83 – 25 = 13.83 mm

Distance from the neutral axis to the outer surface,

yo = Ro – Rn = 65 – 38.83 = 26.17 mm

We know that maximum bending stress at the inner surface,

σbi = 2. 708 350 13.83
287.4 N/mm

. . 480 2.84 25
i

i

M y

A e R

×= =
× ×

= 287.4 MPa (tensile)

and maximum bending stress at the outer surface,

σb0 = 2. 708 350 26.17
209.2 N/mm

. . 480 2.84 65
o

o

M y

A e R

×= =
× ×

= 209.2 MPa (compressive)



142    A Textbook of Machine Design

∴ Resultant stress on the inner surface

= σt + σbi = 10.42 + 287.4 = 297.82 MPa (tensile) Ans.
and resultant stress on the outer surface,

= σt – σbo = 10.42 – 209.2 = – 198.78 MPa

= 198.78 MPa (compressive) Ans.

Example 5.11. The crane hook carries a load of 20 kN  as shown in Fig. 5.11. The section at
X-X is rectangular whose horizontal side is 100 mm. Find the stresses in the inner and outer fibres at
the given section.

Solution. Given : W = 20 kN = 20 × 103 N ; Ri = 50 mm ; Ro = 150 mm ; h = 100 mm ; b = 20 mm

We know that area of section at X-X,

A = b.h = 20 × 100 = 2000 mm2

The various distances are shown in Fig. 5.12.

We know that radius of curvature of the neutral axis,

Rn =
100 100

91.07 mm
150 1.098

loglog
50

o
ee

i

h

R

R

= = =
⎛ ⎞ ⎛ ⎞

⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠
and radius of curvature of the centroidal axis,

R =
100

50 100 mm
2 2i
h

R + = + =

∴ Distance between the centroidal axis and neutral axis,

e = R – Rn = 100 – 91.07 = 8.93 mm

and distance between the load and the centroidal axis,

x = R = 100 mm

∴ Bending moment about the centroidal axis,

M = W × x = 20 × 103 × 100 = 2 ×  106 N-mm

A big crane hook
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The section at X-X is subjected to a direct tensile load of W = 20 × 103 N and a bending moment

of M = 2 × 106 N-mm. We know that direct tensile stress at section X-X,

σt =
320 10

2000

W

A

×=  = 10 N/mm2 = 10 MPa

              

Fig. 5.11 Fig. 5.12

We know that the distance from the neutral axis to the inside fibre,

yi = Rn – Ri = 91.07 – 50 = 41.07 mm

and distance from the neutral axis to outside fibre,

yo = Ro – Rn = 150 – 91.07 = 58.93 mm

∴ Maximum bending stress at the inside fibre,

σbi =
6. 2 10 41.07

. . 2000 8.93 50
i

i

M y

A e R

× ×=
× ×  = 92 N/mm2 = 92 MPa (tensile)

and maximum bending stress at the outside fibre,

σbo =
6. 2 10 58.93

. . 2000 8.93 150
o

o

M y

A e R

× ×=
× ×  = 44 N/mm2

= 44 MPa (compressive)

∴ Resultant stress at the inside fibre

= σt + σbi = 10 + 92 = 102 MPa (tensile) Ans.

and resultant stress at the outside fibre

= σt – σbo = 10 – 44 = – 34 MPa = 34 MPa (compressive) Ans.

Example 5.12. A C-clamp is subjected to a maximum load of W, as shown in Fig. 5.13. If the
maximum tensile stress in the clamp is limited to 140 MPa, find the value of load W.

Solution. Given : σt(max) = 140 MPa = 140 N/mm2 ; Ri = 25 mm ; Ro = 25 + 25 = 50 mm ;
bi = 19 mm ; ti = 3 mm ; t = 3 mm ; h = 25 mm

We know that area of section at X-X,

A = 3 × 22 + 3 × 19 = 123 mm2
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Fig. 5.13

The various distances are shown in Fig. 5.14. We know that radius
of curvature of the neutral axis,

Rn =  
( – ) .

( – ) log log

i i

i i o
i e e

i i

t b t t h

R t R
b t t

R R

+
+⎛ ⎞ ⎛ ⎞+⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠

 =
3 (19 – 3) 3 25

25 3 50
(19 – 3) log 3 log

25 25e e

+ ×
+⎛ ⎞ ⎛ ⎞+⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠

=
123 123

31.64 mm
16 0.113 3 0.693 3.887

= =
× + ×

and radius of curvature of the centroidal axis,

R =
2 21 1

2 2. ( – )

. ( – )
i i

i
i i

h t t b t
R

h t t b t

+
+

+
2 21 1

2 225 3 3 (19 – 3) 937.5 72
25 25

25 3 3 (19 – 3) 75 48

× × + × += + = +
× + +

= 25 + 8.2 = 33.2 mm

Distance between the centroidal axis and neutral axis,

e = R – Rn = 33.2 – 31.64 = 1.56 mm

and distance between the load W and the centroidal axis,

x = 50 + R = 50 + 33.2 = 83.2 mm

∴   Bending moment about the centroidal axis,

M = W.x = W × 83.2 = 83.2 W N-mm

Fig. 5.14

The section at X-X is subjected to a direct tensile load of W and a bending moment of 83.2 W.
The maximum tensile stress will occur at point P (i.e. at the inner fibre of the section).

Distance from the neutral axis to the point P,

yi = Rn – Ri = 31.64 – 25 = 6.64 mm
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Big electric generators undergo high torsional stresses.

Direct tensile stress at section X-X,

σt = 20.008 N/mm
123

W W
W

A
= =

and maximum bending stress at point P,

σbi = 2. 83.2 6.64
0.115 N/mm

. . 123 1.56 25
i

i

M y W
W

A e R

×= =
× ×

We know that the maximum tensile stress σt(max),

140 = σt + σbi = 0.008 W + 0.115 W = 0.123 W

∴ W = 140/0.123 = 1138 N Ans.

Note : We know that distance from the neutral axis to the outer fibre,

yo = Ro – Rn = 50 – 31.64 = 18.36 mm

∴ Maximum bending stress at the outer fibre,

σbo =
. 83.2 18.36

0.16
. . 123 1.56 50

o

o

M y W
W

A e R

×= =
× ×

and maximum stress at the outer fibre,

= σt – σbo = 0.008 W – 0.16 W = – 0.152 W N/mm2

= 0.152 W N/mm2 (compressive)

From above we see that stress at the outer fibre is larger in this case than at the inner fibre, but this stress
at outer fibre is compressive.

5.6 Principal Stresses and Principal Planes
In the previous chapter, we have discussed about the direct tensile and compressive stress as

well as simple shear. Also we have always referred the stress in a plane which is at right angles to the
line of action of the force.
But it has been observed
that at any point in a
strained material, there are
three planes, mutually
perpendicular to each
other which carry direct
stresses only and no shear
stress. It may be noted that
out of these three direct
stresses, one will be
maximum and the other
will be minimum. These
perpendicular planes
which have no shear stress
are known as principal
planes and the direct
stresses along these planes
are known as principal
stresses. The planes on
which the maximum shear
stress act are known as planes of maximum shear.

Field structure
(magnet)

Armature con-
taining several
coils

The ends of the coils
are arranged round
the shaft
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5.7 Determination of Principal Stresses for a Member Subjected to Bi-axial
Stress

When a member is subjected to bi-axial stress (i.e. direct stress in two mutually perpendicular
planes accompanied by a simple shear stress), then the normal and shear stresses are obtained as
discussed below:

Consider a rectangular body ABCD of uniform cross-sectional area and unit thickness subjected
to normal stresses σ1 and σ2 as shown in Fig. 5.15 (a). In addition to these normal stresses, a shear
stress τ also acts.

It has been shown in books on ‘Strength of Materials’ that the normal stress across any oblique
section such as EF inclined at an angle θ with the direction of σ2, as shown in Fig. 5.15 (a), is given by

σt = 1 2 1 2 cos 2 sin 2
2 2

σ + σ σ + σ+ θ + τ θ ...(i)

and tangential stress (i.e. shear stress) across the section EF,

τ1 =
1

2
 (σ1 – σ2) sin 2θ – τ cos 2θ ...(ii)

Since the planes of maximum and minimum normal stress (i.e. principal planes) have no
shear stress, therefore the inclination of principal planes is obtained by equating τ1 = 0 in the above
equation (ii), i.e.

         
1

2
 (σ1 – σ2) sin 2θ – τ cos 2θ = 0

∴                                            tan 2θ = 
1 2

2

–

τ
σ σ

...(iii)

Fig. 5.15. Principal stresses for a member subjected to bi-axial stress.

We know that there are two principal planes at right angles to each other. Let θ1 and θ2 be the
inclinations of these planes with the normal cross-section.

From Fig. 5.16, we find that

sin 2θ =
2 2

1 2

2

( – ) 4

τ±
σ σ + τ

(a) Direct stress in two mutually
prependicular planes accompanied by
a simple shear stress.

(b) Direct stress in one plane accompanied
by a simple shear stress.
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Fig. 5.16

∴ sin 2θ1 =
2 2

1 2

2

( – ) 4

τ+
σ σ + τ

and sin 2θ2 =
2 2

1 2

2
–

( – ) 4

τ

σ σ + τ

Also cos 2θ = 1 2

2 2
1 2

–

( – ) 4

σ σ±
σ σ + τ

∴ cos 2θ1 = 1 2

2 2
1 2

–

( – ) 4

σ σ
+

σ σ + τ

and cos 2θ2 = 1 2

2 2
1 2

–
–

( – ) 4

σ σ

σ σ + τ
The maximum and minimum principal stresses may now be obtained by substituting the values

of sin 2θ and cos 2θ in equation (i).
∴ Maximum principal (or normal) stress,

σt1 = 2 21 2
1 2

1
( – ) 4

2 2

σ + σ + σ σ + τ ...(iv)

and minimum principal (or normal) stress,

σt2 = 2 21 2
1 2

1
– ( – ) 4

2 2

σ + σ σ σ + τ ...(v)

The planes of maximum shear stress are at right angles to each other and are inclined at 45° to
the principal planes. The maximum shear stress is given by one-half the algebraic difference between
the principal stresses, i.e.

τmax = 2 21 2
1 2

– 1
( – ) 4

2 2
t tσ σ

= σ σ + τ ...(vi)

A Boring mill.
Note : This picture is given as additional information and is not a direct example of the current chapter.



148    A Textbook of Machine Design

Notes: 1. When a member is subjected to direct stress in one plane accompanied by a simple shear stress as shown
in Fig. 5.15 (b), then the principal stresses are obtained by substituting σ2 = 0 in equation (iv), (v) and (vi).

∴ σt1 = 2 21
1

1
( ) 4

2 2

σ ⎡ ⎤+ σ + τ⎣ ⎦

σt2 = 2 21
1

1
– ( ) 4

2 2

σ ⎡ ⎤σ + τ⎣ ⎦

and τmax = 2 2
1

1
( ) 4

2
⎡ ⎤σ + τ⎣ ⎦

2. In the above expression of σt2, the value of 
2 2

1
1

( ) 4
2
⎡ ⎤σ + τ⎣ ⎦  is more than 

1

2

σ
. Therefore the nature

of σt2 will be opposite to that of σt1, i.e. if σt1 is tensile then σt2 will be compressive and vice-versa.

5.8 Application of  Principal Stresses in Designing Machine Members
There are many cases in practice, in which machine members are subjected to combined stresses

due to simultaneous action of either tensile or compressive stresses combined with shear stresses. In
many shafts such as propeller shafts, C-frames etc., there are direct tensile or compressive stresses
due to the external force and shear stress due to torsion, which acts normal to direct tensile or com-
pressive stresses. The shafts like crank shafts, are subjected simultaneously to torsion and bending. In
such cases, the maximum principal stresses, due to the combination of tensile or compressive stresses
with shear stresses may be obtained.

The results obtained in the previous article may be written as follows:

1. Maximum tensile stress,

σt(max) = 2 21
( ) 4

2 2
t

t
σ ⎡ ⎤+ σ + τ⎣ ⎦

2. Maximum compressive stress,

σc(max) = 2 21
( ) 4

2 2
c

c
σ ⎡ ⎤+ σ + τ⎣ ⎦

3. Maximum shear stress,

τmax = 2 21
( ) 4

2 t
⎡ ⎤σ + τ⎣ ⎦

where σt = Tensile stress due to direct load and bending,

σc = Compressive stress, and

τ = Shear stress due to torsion.

Notes : 1. When τ = 0 as in the case of thin cylindrical shell subjected in internal fluid pressure, then

σt (max) = σt

2. When the shaft is subjected to an axial load (P) in addition to bending and twisting moments as in the
propeller shafts of ship and shafts for driving worm gears, then the stress due to axial load must be added to the
bending stress (σb). This will give the resultant tensile stress or compressive stress (σt or σc) depending upon the
type of axial load (i.e. pull or push).

Example 5.13. A hollow shaft of 40 mm outer diameter and 25 mm inner diameter is subjected
to a twisting moment of 120 N-m, simultaneously, it is subjected to an axial thrust of 10 kN and a
bending moment of 80 N-m. Calculate the maximum compressive and shear stresses.

Solution. Given: do = 40 mm ; di = 25 mm ; T = 120 N-m = 120 × 103 N-mm ; P = 10 kN
= 10 × 103 N ; M = 80 N-m = 80 × 103 N-mm

We know that cross-sectional area of the shaft,

A = 2 2 2 2 2( ) – ( ) (40) – (25) 766 mm
4 4o id d
π π⎡ ⎤ ⎡ ⎤= =⎣ ⎦⎣ ⎦
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∴ Direct compressive stress due to axial thrust,

σo =
310 10

766

P

A

×=  = 13.05 N/mm2 = 13.05 MPa

Section modulus of the shaft,

Z =
4 4 4 4

3( ) – ( ) (40) – (25)
5325 mm

32 32 40
o i

o

d d

d

⎡ ⎤ ⎡ ⎤π π= =⎢ ⎥ ⎢ ⎥
⎣ ⎦⎣ ⎦

∴   Bending stress due to bending moment,

σb =
380 10

5325

M

Z

×=  = 15.02 N/mm2 = 15.02 MPa (compressive)

and resultant compressive stress,
σc = σb + σo = 15.02 + 13.05 = 28.07 N/mm2 = 28.07 MPa

We know that twisting moment (T),

120 × 103 =
4 4 4 4( ) – ( ) (40) – (25)

10 650
16 16 40

o i

o

d d

d

⎡ ⎤ ⎡ ⎤π π× τ = × τ = τ⎢ ⎥ ⎢ ⎥
⎣ ⎦⎣ ⎦

∴ τ = 120 × 103/10 650 = 11.27 N/mm2 = 11.27 MPa

Maximum compressive stress
We know that maximum compressive stress,

σc(max) = 2 21
( ) 4

2 2
c

c
σ ⎡ ⎤+ σ + τ⎣ ⎦

= 2 228.07 1
(28.07) 4 (11.27)

2 2
⎡ ⎤+ +⎣ ⎦

= 14.035 + 18 = 32.035 MPa Ans.
Maximum shear stress

We know that maximum shear stress,

                                 τmax  =
2 2 2 21 1

2 2
( ) 4 (28.07) 4 (11.27) 18 MPac

⎡ ⎤ ⎡ ⎤σ + τ = + =⎣ ⎦⎣ ⎦  Ans.

Example 5.14.  A shaft, as shown in Fig. 5.17, is subjected to a bending load of 3 kN, pure torque
of 1000 N-m and an axial pulling force of 15 kN.

Calculate the stresses at A and B.

Solution. Given : W = 3 kN = 3000 N ;
T = 1000 N-m = 1 × 106 N-mm ; P = 15 kN
= 15 × 103 N ; d = 50 mm; x = 250 mm

We know that cross-sectional area of the shaft,

                                     A =
4

π
 × d 2

= 
4

π
 (50)2 = 1964 mm2

∴ Tensile stress due to axial pulling at points A and B,

σo =
315 10

1964

P

A

×=   = 7.64 N/mm2 = 7.64 MPa

Bending moment at points A and B,

M = W.x = 3000 × 250 = 750 × 103 N-mm

Fig. 5.17
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Section modulus for the shaft,

Z =
32

π
 × d3 = 

32

π
 (50)3

= 12.27 × 103 mm3

∴ Bending stress at points A and B,

σb =
3

3

750 10

12.27 10

M

Z

×=
×

= 61.1 N/mm2 = 61.1 MPa

This bending stress is tensile at point A and
compressive at point B.

∴ Resultant tensile stress at point A,
         σA = σb + σo = 61.1 + 7.64
             = 68.74 MPa

and resultant compressive stress at point B,
         σB = σb – σo = 61.1 – 7.64 = 53.46 MPa
We know that the shear stress at points A and B due to the torque transmitted,

           τ =
6

3 3

16 16 1 10

(50)

T

d

× ×=
π π

 = 40.74 N/mm2 = 40.74 MPa                 ... 3

16

π⎛ ⎞= × τ ×⎜ ⎟
⎝ ⎠
Q T d

Stresses at point A
We know that maximum principal (or normal) stress at point A,

σA(max) = 2 2A
A

1
( ) 4

2 2

σ ⎡ ⎤+ σ + τ⎣ ⎦

= 2 268.74 1
(68.74) 4 (40.74)

2 2
⎡ ⎤+ +⎣ ⎦

= 34.37 + 53.3 = 87.67 MPa (tensile) Ans.
Minimum principal (or normal) stress at point A,

σA(min) = 2 2A
A

1
– ( ) 4

2 2

σ ⎡ ⎤σ + τ⎣ ⎦  = 34.37 – 53.3 = – 18.93 MPa

= 18.93 MPa (compressive ) Ans.
and maximum shear stress at point A,

τA(max) = 2 2 2 21 1
A2 2

( ) 4 (68.74) 4 (40.74)⎡ ⎤ ⎡ ⎤σ + τ = +⎣ ⎦⎣ ⎦

= 53.3 MPa Ans.

Stresses at point B

We know that maximum principal (or normal) stress at point B,

σB(max) = 2 2B
B

1
( ) 4

2 2

σ ⎡ ⎤+ σ + τ⎣ ⎦

= 2 253.46 1
(53.46) 4 (40.74)

2 2
⎡ ⎤+ +⎣ ⎦

= 26.73 + 48.73 = 75.46 MPa (compressive) Ans.

Note : This picture is given as additional information and
is not a direct example of the current chapter.

This picture shows a machine component inside a
crane
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Minimum principal (or normal) stress at point B,

σB(min) = B 2 2
B

1
– ( ) 4

2 2

σ ⎡ ⎤σ + τ⎣ ⎦

= 26.73 – 48.73 = – 22 MPa

= 22 MPa (tensile) Ans.

and maximum shear stress at point B,

τB(max) = 2 2 2 21 1
B2 2

( ) 4 (53.46) 4 (40.74)⎡ ⎤ ⎡ ⎤σ + τ = +⎣ ⎦⎣ ⎦

=  48.73 MPa Ans.

Example 5.15. An overhang crank with pin and shaft is shown in Fig. 5.18. A tangential load
of 15 kN acts on the crank pin. Determine the maximum principal stress and the maximum shear
stress at the centre of the crankshaft bearing.

Fig. 5.18

Solution. Given : W = 15 kN = 15 × 103 N ; d = 80 mm ; y = 140 mm ; x = 120 mm

Bending moment at the centre of the crankshaft bearing,

M = W × x = 15 × 103 × 120 = 1.8 × 106 N-mm

and torque transmitted at the axis of the shaft,

T = W × y = 15 × 103 × 140 = 2.1 × 106 N-mm

We know that bending stress due to the bending moment,

σb = 3

32M M

Z d
=

π
... 3

32

π⎛ ⎞= ×⎜ ⎟
⎝ ⎠
QZ d

=
6

3

32 1.8 10

(80)

× ×
π

 = 35.8 N/mm2 = 35.8 MPa

and shear stress due to the torque transmitted,

τ =
6

3 3

16 16 2.1 10

(80)

T

d

× ×=
π π

 = 20.9 N/mm2 = 20.9 MPa

Maximum principal stress
We know that maximum principal stress,

σt(max) = 2 21
( ) 4

2 2
t

t
σ ⎡ ⎤+ σ + τ⎣ ⎦

= 2 235.8 1
(35.8) 4 (20.9)

2 2
⎡ ⎤+ +⎣ ⎦ ... (Substituting σt = σb)

= 17.9 + 27.5 = 45.4 MPa Ans.
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Maximum shear stress
We know that maximum shear stress,

τmax = 2 2 2 21 1
2 2

( ) 4 (35.8) 4 (20.9)t
⎡ ⎤ ⎡ ⎤σ + τ = +⎣ ⎦⎣ ⎦

= 27.5 MPa Ans.

5.9 Theories of Failure Under Static Load
It has already been discussed in the previous chapter that strength of machine members is based

upon the mechanical properties of the materials used. Since these properties are usually determined
from simple tension or compression tests, therefore, predicting failure in members subjected to uni-
axial stress is both simple and straight-forward. But the problem of predicting the failure stresses for
members subjected to bi-axial or tri-axial stresses is much more complicated. In fact, the problem is
so complicated that a large number of different theories have been formulated. The principal theories
of failure for a member subjected to bi-axial stress are as follows:

1. Maximum principal (or normal) stress theory (also known as Rankine’s theory).
2. Maximum shear stress theory (also known as Guest’s or Tresca’s theory).
3. Maximum principal (or normal) strain theory (also known as Saint Venant theory).
4. Maximum strain energy theory (also known as Haigh’s theory).
5. Maximum distortion energy theory (also known as Hencky and Von Mises theory).
Since ductile materials usually fail by yielding i.e. when permanent deformations occur in the

material and brittle materials fail by fracture, therefore the limiting strength for these two classes of
materials is normally measured by different mechanical properties. For ductile materials, the limiting
strength is the stress at yield point as determined from simple tension test and it is, assumed to be
equal in tension or compression. For brittle materials, the limiting strength is the ultimate stress in
tension or compression.

5.10 Maximum Principal or Normal Stress Theory (Rankine’s Theory)
According to this theory, the failure or yielding occurs at a point in a member when the maximum

principal or normal stress in a bi-axial stress system reaches the limiting strength of the material in a
simple tension test.

Since the limiting strength for ductile materials is yield point stress and for brittle materials
(which do not have well defined yield point) the limiting strength is ultimate stress, therefore according

Pig iron is made from iron ore in a blast furnace. It is a brittle form of iron that contains 4-5 per cent carbon.

Coke

Waste gases
are removed

Hot air
blasted into
furnace

Molten slag removed

Iron ore

Pig iron and
scrap steel
are poured
into converter

Oxygen is
blown into
molten metal

Converter pours out
molten steel

Molten steel fluid can be poured
into moulds or cast while fuild

Oxygen burns off carbon to
turn the pig iron into steelMolten pig iron

Ladle

Iron

Limestone

Mixed raw
maerials

The molten steel can
then be tapped off.

Note : This picture is given as additional information and is not a direct example of the current chapter.
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to the above theory, taking factor of safety (F.S.) into consideration, the maximum principal or normal
stress (σt1) in a bi-axial stress system is given by

σt1 =
. .
yt

F S

σ
, for ductile materials

=
. .
u

F S

σ
, for brittle materials

where σyt = Yield point stress in tension as determined from simple tension
test, and

σu = Ultimate stress.
Since the maximum principal or normal stress theory is based on failure in tension or compression

and ignores the possibility of failure due to shearing stress, therefore it is not used for ductile materials.
However, for brittle materials which are relatively strong in shear but weak in tension or compression,
this theory is generally used.
Note : The value of maximum principal stress (σt1) for a member subjected to bi-axial stress system may be
determined as discussed in Art. 5.7.

5.11 Maximum Shear Stress Theory (Guest’s or Tresca’s Theory)
According to this theory, the failure or yielding occurs at a point in a member when the maximum

shear stress in a bi-axial stress system reaches a value equal to the shear stress at yield point in a
simple tension test. Mathematically,

τmax = τyt /F.S. ...(i)
where τmax = Maximum shear stress in a bi-axial stress system,

τyt = Shear stress at yield point as determined from simple tension test,
and

F.S. = Factor of safety.

Since the shear stress at yield point in a simple tension test is equal to one-half the yield stress
in tension, therefore the equation (i) may be written as

τmax =
2 . .

yt

F S

σ
×

This theory is mostly used for designing members of ductile materials.
Note: The value of maximum shear stress in a bi-axial stress system (τmax) may be determined as discussed in
Art. 5.7.

5.12 Maximum Principal Strain Theory (Saint Venant’s Theory)
According to this theory, the failure or yielding occurs at a point in a member when the maximum

principal (or normal) strain in a bi-axial stress system reaches the limiting value of strain (i.e. strain at
yield point) as determined from a simple tensile test. The maximum principal (or normal) strain in a
bi-axial stress system is given by

εmax = 1 2–
.

t t

E m E

σ σ

∴ According to the above theory,

εmax = 1 2–
. . .

ytt t

E m E E F S

σσ σ
= ε =

×
...(i)

where σt1 and σt2 = Maximum and minimum principal stresses in a bi-axial stress system,
ε = Strain at yield point as determined from simple tension test,

1/m = Poisson’s ratio,
E = Young’s modulus, and

F.S. = Factor of safety.
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From equation (i), we may write that

2
1 –

. .
ytt

t m F S

σσ
σ =

This theory is not used, in general, because it only gives reliable results in particular cases.

5.13 Maximum Strain Energy Theory (Haigh’s Theory)
According to this theory, the failure or yielding occurs at a point in a member when the strain

energy per unit volume in a bi-axial stress system reaches the limiting strain energy (i.e. strain energy
at the yield point ) per unit volume as determined from simple tension test.

We know that strain energy per unit volume in a bi-axial stress system,

           U1 =
2 2 1 2

1 2
21

( ) ( ) –
2

t t
t tE m

σ × σ⎡ ⎤σ + σ⎢ ⎥⎣ ⎦
and limiting strain energy per unit volume for yielding as determined from simple tension test,

U2 =
2

1

2 . .
yt

E F S

σ⎛ ⎞
⎜ ⎟
⎝ ⎠

According to the above theory, U1 = U2.

∴
2

2 2 1 2
1 2

21 1
( ) ( ) –

2 2 . .
ytt t

t tE m E F S

σ⎛ ⎞σ × σ⎡ ⎤σ + σ = ⎜ ⎟⎢ ⎥⎣ ⎦ ⎝ ⎠

or (σt1)2 + (σt2)
2 – 

2
1 22

. .
ytt t

m F S

σ⎛ ⎞σ × σ
= ⎜ ⎟
⎝ ⎠

This theory may be used for ductile materials.

5.14 Maximum Distortion Energy Theory (Hencky and Von Mises Theory)
According to this theory, the failure or yielding occurs at a point in a member when the distortion

strain energy (also called shear strain energy) per unit volume in a bi-axial stress system reaches the
limiting distortion energy (i.e. distortion energy at yield point) per unit volume as determined from a
simple tension test. Mathematically, the maximum distortion energy theory for yielding is expressed
as

(σt1)
2 + (σt2)

2 – 2σt1 × σt2 = 
2

. .
yt

F S

σ⎛ ⎞
⎜ ⎟
⎝ ⎠

This theory is mostly used for ductile materials in place of maximum strain energy theory.
Note: The maximum distortion energy is the difference between the total strain energy and the strain energy due
to uniform stress.

This double-decker A 380 has a passenger capacity of 555. Its engines and parts  should be robust
which can bear high torsional and variable stresses.
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Example 5.16. The load on a bolt consists of an axial pull of 10 kN together with a transverse

shear force of 5 kN. Find the diameter of bolt required according to
1. Maximum principal stress theory; 2. Maximum shear stress theory; 3. Maximum principal

strain theory; 4. Maximum strain energy theory; and 5. Maximum distortion energy theory.

Take permissible tensile stress at elastic limit = 100 MPa and poisson’s ratio = 0.3.

Solution. Given : Pt1 = 10 kN ; Ps = 5 kN ; σt(el) = 100 MPa = 100 N/mm2 ; 1/m = 0.3

Let d = Diameter of the bolt in mm.

∴ Cross-sectional area of the bolt,

A =
4

π
 × d2 = 0.7854 d 2 mm2

We know that axial tensile stress,

σ1 =
21

2 2

10 12.73
kN/mm

0.7854
tP

A d d
= =

and transverse shear stress,

τ =
2

2 2

5 6.365
kN/mm

0.7854
sP

A d d
= =

1.  According to maximum principal stress theory
We know that maximum principal stress,

σt1 = 2 21 2
1 2

1
( – ) 4

2 2

σ + σ ⎡ ⎤+ σ σ + τ⎣ ⎦

= 2 21
1

1
( ) 4

2 2

σ ⎡ ⎤+ σ + τ⎣ ⎦ ...(Q σ2 = 0)

=
2 2

2 2 2

12.73 1 12.73 6.365
4

22 d d d

⎡ ⎤⎛ ⎞ ⎛ ⎞⎢ ⎥+ +⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

= 2 2

6.365 1 6.365
4 4

2d d
⎡ ⎤+ × +⎣ ⎦

= 2 2
2 2 2

6.365 1 15.365 15 365
1 4 4 kN/mm N/mm

2d d d

⎡ ⎤+ + = =⎢ ⎥⎣ ⎦
According to maximum principal stress theory,

σt1 = σt(el)   or  
2

15 365
100

d
=

∴ d 2 = 15 365/100 = 153.65  or  d = 12.4 mm Ans.
2. According to maximum shear stress theory

We know that maximum shear stress,

τmax = 2 2 2 21 1
1 2 12 2

( – ) 4 ( ) 4⎡ ⎤ ⎡ ⎤σ σ + τ = σ + τ⎣ ⎦ ⎣ ⎦ ...(Q σ2 = 0)

=
2 2

2 2 2

1 12.73 6.365 1 6.365
4 4 4

2 2d d d

⎡ ⎤⎛ ⎞ ⎛ ⎞⎢ ⎥ ⎡ ⎤+ = × +⎜ ⎟ ⎜ ⎟ ⎣ ⎦⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

= 2 2
2 2

9 9000
kN/mm N/mm

d d
=

According to maximum shear stress theory,

τmax =
( )

2
t elσ

  or   
2

9000 100
50

2d
= =

∴ d 2 = 9000 / 50 = 180   or   d = 13.42 mm Ans.
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3.  According to maximum principal strain theory
We know that maximum principal stress,

σt1 =
2 21

1 2

1 15 365
( ) 4

2 2 d

σ ⎡ ⎤+ σ + τ =⎣ ⎦ ...(As calculated before)

and minimum principal stress,

σt2 = 2 21
1

1
– ( ) 4

2 2

σ ⎡ ⎤σ + τ⎣ ⎦

=
2 2

2 2 2

12.73 1 12.73 6.365
– 4

22 d d d

⎡ ⎤⎛ ⎞ ⎛ ⎞⎢ ⎥+⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

= 2 2

6.365 1 6.365
– 4 4

2d d
⎡ ⎤× +⎣ ⎦

= 2
2 2

6.365 – 2.635
1 – 2 kN/mm⎡ ⎤ =⎣ ⎦

d d

2
2

– 2635
N/mm=

d
We know that according to maximum principal strain theory,

    1 2–t t

E mE

σ σ
  = ( )t el

E

σ
or 2

1 ( )– t
t t elm

σ
σ = σ

∴
2 2

15 365 2635 0.3
100

d d

×+ =   or  2

16 156
100

d
=

d 2 =16 156 / 100 = 161.56   or   d = 12.7 mm Ans.
4. According to maximum strain energy theory

We know that according to maximum strain energy theory,

(σt1)2 + (σt2)
2 – 1 22 t t

m

σ × σ
 = [σt(el)]

2

2 2
2

2 2 2 2

15 365 – 2635 15 365 – 2635
– 2 0.3 (100)

d d d d

⎡ ⎤ ⎡ ⎤+ × × × =⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
6 6 6

3
4 4 4

236 10 6.94 10 24.3 10
10 10

d d d

× × ×+ + = ×

4 4 4

23 600 694 2430
1

d d d
+ + =   or  

4

26 724
1

d
=

∴ d 4 = 26 724  or  d = 12.78 mm Ans.
5. According to maximum distortion energy theory

According to maximum distortion energy theory,

(σt1)
2 + (σt2)

2 – 2σt1 × σt2= [σt(el)]
2

2 2
2

2 2 2 2

15 365 – 2635 15 365 – 2635
– 2 (100)

d d d d

⎡ ⎤ ⎡ ⎤+ × × =⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
6 6 6

3
4 4 4

236 10 6.94 10 80.97 10
10 10

d d d

× × ×+ + = ×

4 4 4

23 600 694 8097
1

d d d
+ + = or 4

32 391
1

d
=

∴ d4 = 32 391  or  d = 13.4 mm Ans.

Front view of a jet engine. The rotors un-
dergo high torsional and bending  stresses.
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Example 5.17. A cylindrical shaft made of steel of yield strength 700 MPa is subjected to static

loads consisting of bending moment 10 kN-m and a torsional moment 30 kN-m. Determine the diameter
of the shaft using two different theories of failure, and assuming a factor of safety of 2. Take E = 210
GPa and poisson's ratio = 0.25.

Solution. Given : σyt = 700 MPa = 700 N/mm2 ; M = 10 kN-m = 10 × 106 N-mm ; T = 30 kN-m
= 30 × 106 N-mm ; F.S. = 2 ; E = 210 GPa = 210 × 103 N/mm2 ; 1/m = 0.25

Let d = Diameter of the shaft in mm.
First of all, let us find the maximum and minimum principal stresses.
We know that section modulus of the shaft

Z =
32

π
 × d 3 = 0.0982 d3 mm3

∴  Bending (tensile) stress due to the bending moment,

σ1 =
6 6

2
3 3

10 10 101.8 10
N/mm

0.0982

M

Z d d

× ×= =

and shear stress due to torsional moment,

τ =
6 6

2
3 3 3

16 16 30 10 152.8 10
N/mm

T

d d d

× × ×= =
π π

We know that maximum principal stress,

σt1 = 2 21 2
1 2

1
( – ) 4

2 2

σ + σ ⎡ ⎤+ σ σ + τ⎣ ⎦

= 2 21
1

1
( ) 4

2 2

σ ⎡ ⎤+ σ + τ⎣ ⎦ ...(Q σ2 = 0)

=

2 26 6 6

3 3 3

101.8 10 1 101.8 10 152.8 10
4

22d d d

⎡ ⎤⎛ ⎞ ⎛ ⎞× × ×⎢ ⎥+ +⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

=
6 6

2 2
3 3

50.9 10 1 10
(101.8) 4 (152.8)

2d d

× ⎡ ⎤+ × +⎣ ⎦

=
6 6 6

2
3 3 3

50.9 10 161 10 211.9 10
N/mm

d d d

× × ×+ =

and minimum principal stress,

σt2 = 2 21 2
1 2

1
– ( – ) 4

2 2

σ + σ ⎡ ⎤σ σ + τ⎣ ⎦

= 2 21
1

1
– ( ) 4

2 2

σ ⎡ ⎤σ + τ⎣ ⎦ ...(Q σ2 = 0)

=
6 6 6

2
3 3 3

50.9 10 161 10 – 110.1 10
– N/mm

d d d

× × ×=

Let us now find out the diameter of shaft (d) by considering the maximum shear stress theory
and maximum strain energy theory.

1. According to maximum shear stress theory
We know that maximum shear stress,

τmax =
6 6 6

1 2
3 3 3

1 211.9 10 110.1 10 161 10

2 2
t t

d d d

⎡ ⎤σ − σ × × ×
= + =⎢ ⎥

⎣ ⎦
We also know that according to maximum shear stress theory,

τmax =
2 . .

yt

F S

σ
   or   

6

3

161 10 700
175

2 2d

× = =
×

∴ d 3 = 161 × 106 / 175 = 920 × 103  or  d = 97.2 mm Ans.
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Note:  The value of maximum shear stress (τmax) may also be obtained by using the relation,

τmax = 2 21
12

( ) 4⎡ ⎤σ + τ⎣ ⎦

=

2 26 6

3 3

1 101.8 10 152.8 10
4

2 d d

⎡ ⎤⎛ ⎞ ⎛ ⎞× ×⎢ ⎥+⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

=
6

2 2
3

1 10
(101.8) 4 (152.8)

2 d
⎡ ⎤× +⎣ ⎦

=
6 6

2
3 3

1 10 161 10
322 N/mm

2 d d

×× × = ...(Same as before)

2.  According to maximum strain energy theory
We know that according to maximum strain energy theory,

                   
2

2 2 1 2
1 2

21 1
( ) ( ) –

2 2 . .
ytt t

t tE m E F S

σ⎛ ⎞σ × σ⎡ ⎤σ + σ = ⎜ ⎟⎢ ⎥⎣ ⎦ ⎝ ⎠

or                         (σt1)
2 + (σt2)

2 – 
2

1 22

. .
ytt t

m F S

σ⎛ ⎞σ × σ
= ⎜ ⎟
⎝ ⎠

   

2 2 26 6 6 6

3 3 3 3

211.9 10 – 110.1 10 211.9 10 – 110.1 10 700
– 2 0.25

2d d d d

⎡ ⎤ ⎡ ⎤× × × × ⎛ ⎞+ × × × = ⎜ ⎟⎢ ⎥ ⎢ ⎥
⎝ ⎠⎣ ⎦ ⎣ ⎦

or         
12 12 12

6 6 6

44 902 10 12 122 10 11 665 10
122 500

d d d

× × ×+ + =
12

6

68 689 10
122 500

d

× =

∴ d 6 = 68 689 × 1012/122 500 = 0.5607 × 1012  or  d = 90.8 mm Ans.
Example 5.18. A mild steel shaft of 50 mm diameter is subjected to a bending moment of 2000

N-m and a torque T. If the yield point of the steel in tension is 200 MPa, find the maximum value of
this torque without causing yielding of the shaft according to 1. the maximum principal stress; 2. the
maximum shear stress; and 3. the maximum distortion strain energy theory of yielding.

Solution. Given: d = 50 mm ; M = 2000 N-m = 2 × 106 N-mm ; σyt = 200 MPa = 200 N/mm2

Let T = Maximum torque without causing yielding of the shaft, in N-mm.

1.  According to maximum principal stress theory
We know that section modulus of the shaft,

Z =
32

π
 × d3 = 

32

π
 (50)3 = 12 273 mm3

∴  Bending stress due to the bending moment,

σ1 =
6

22 10
163 N/mm

12 273

M

Z

×= =

and shear stress due to the torque,

τ = 3 3

16 16

(50)

T T

d
=

π π
 = 0.0407 × 10–3 T N/mm2

... 3

16

π⎡ ⎤= × τ ×⎢ ⎥⎣ ⎦
QT d

We know that maximum principal stress,

σt1 = 2 21
1

1
( ) 4

2 2

σ ⎡ ⎤+ σ + τ⎣ ⎦

= 2 –3 2163 1
(163) 4 (0.0407 10 )

2 2
T⎡ ⎤+ + ×⎣ ⎦
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    = –9 2 281.5 6642.5 1.65 10 N/mmT+ + ×
Minimum principal stress,

 σt2  = 2 21
1

1
– ( ) 4

2 2

σ ⎡ ⎤σ + τ⎣ ⎦

        = 2 –3 2163 1
– (163) 4 (0.0407 10 )

2 2
T⎡ ⎤+ ×⎣ ⎦

        = –9 2 281.5 – 6642.5 1.65 10 N/mmT+ ×
and maximum shear stress,

τmax  = 2 2 2 –3 21 1
12 2

( ) 4 (163) 4 (0.0407 10 )T⎡ ⎤ ⎡ ⎤σ + τ = + ×⎣ ⎦⎣ ⎦

        = –9 2 26642.5 1.65 10 N/mmT+ ×
We know that according to maximum principal stress theory,

 σt1  = σyt ...(Taking F.S. = 1)

∴  –9 281.5 6642.5 1.65 10 200T+ + × =
         6642.5 + 1.65 + 10–9 T 2  = (200 – 81.5)2 = 14 042

T 2  = 9
–9

14 042 – 6642.5
4485 10

1.65 10
= ×

×
or  T  = 2118 × 103 N-mm = 2118 N-m Ans.
2.  According to maximum shear stress theory

We know that according to maximum shear stress theory,

     τmax  =  τyt = 
2
ytσ

∴ –9 2 200
6642.5 1.65 10 100

2
T+ × = =

         6642.5 + 1.65 × 10–9 T 2 = (100)2 = 10 000

T 2  =  
9

–9

10 000 – 6642.5
2035 10

1.65 10
= ×

×
∴ T = 1426 × 103 N-mm = 1426 N-m Ans.

3.  According to maximum distortion strain energy theory
We know that according to maximum distortion strain energy theory
                        (σt1)2 + (σt2)

2 – σt1 × σt2 = (σyt)
2

2 2
–9 2 –9 281.5 6642.5 1.65 10 81.5 – 6642.5 1.65 10T T⎡ ⎤ ⎡ ⎤+ + × + + ×⎣ ⎦ ⎣ ⎦

     –9 2 –9 2 2– 81.5 6642.5 1.65 10 81.5 – 6642.5 1.65 10 (200)T T⎡ ⎤ ⎡ ⎤+ + × + × =⎣ ⎦ ⎣ ⎦

2 –9 2 2 –9 2 22 (81.5) 6642.5 1.65 10 – (81.5) – 6642.5 1.65 10 (200)T T⎡ ⎤ ⎡ ⎤+ + × + × =⎣ ⎦ ⎣ ⎦

(81.5)2 + 3 × 6642.5 + 3 × 1.65 × 10–9 T 2 = (200)2

  26 570 + 4.95 × 10–9 T 2 = 40 000

   T 2 = 9
–9

40 000 – 26 570
2713 10

4.95 10
= ×

×
∴ T  = 1647 × 103 N-mm = 1647 N-m Ans.
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5.15 Eccentric Loading - Direct and Bending Stresses Combined
An external load, whose line of action is parallel but does not coincide with the centroidal axis

of the machine component, is known as an eccentric load. The distance between the centroidal axis
of the machine component and the eccentric load is called eccentricity and is generally denoted by e.
The examples of eccentric loading, from the subject point of view, are C-clamps, punching machines,
brackets, offset connecting links etc.

Fig. 5.19. Eccentric loading.

Consider a short prismatic bar subjected to a compressive load P acting at an eccentricity of e as
shown in Fig. 5.19 (a).

Let us introduce two forces P1 and P2 along the centre line or neutral axis equal in magnitude to
P, without altering the equilibrium of the bar as shown in Fig. 5.19 (b). A little consideration will
show that the force P1 will induce a direct compressive stress over the entire cross-section of the bar,
as shown in Fig. 5.19 (c).

The magnitude of this direct compressive stress is given by

σo = 1P

A
 or 

P

A
, where A is the cross-sectional area of the bar.

The forces P1 and P2 will form a couple equal to P × e which will cause bending stress. This
bending stress is compressive at the edge AB and tensile at the edge CD, as shown in Fig. 5.19 (d).
The magnitude of bending stress at the edge AB is given by

σb =
. . cP e y

I
 (compressive)

and bending stress at the edge CD,

σb =
. . tP e y

I
 (tensile)
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where yc and yt = Distances of the extreme fibres on the compressive and tensile sides,

from the neutral axis respectively, and
I = Second moment of area of the section about the neutral axis i.e.

Y-axis.
According to the principle of superposition, the maximum or the resultant compressive stress at

the edge AB,

σc =
. .

+ =cP e y P

I A
* + = σ + σb o

M P

Z A
and the maximum or resultant tensile stress at the edge CD,

σt =
. .

– –t
b o

P e y P M P

I A Z A
= = σ − σ

The resultant compressive and tensile stress diagram is shown in Fig. 5.19 (e).

Notes: 1. When the member is subjected to a tensile load, then the
above equations may be used by interchanging the subscripts c and t.

2. When the direct stress σo is greater than or equal to bending
stress σb, then the compressive stress shall be present all over the
cross-section.

3. When the direct stress σo is less than the bending stress σb,
then the tensile stress will occur in the left hand portion of the cross-
section and compressive stress on the right hand portion of the cross-
section. In Fig. 5.19, the stress diagrams are drawn by taking σo less
than σb.

In case the eccentric load acts with eccentricity about two axes,
as shown in Fig. 5.20, then the total stress at the extreme fibre

                   = 
XX YY

. .. . yx
P e yP P e x

A I I
± ±

Fig. 5.20. Eccentric load with
eccentricity about two axes.

* We know that bending moment, M = P.e and section modulus, Z = orc t

I I

y y y
=

∴ Bending stress, σb = M / Z

In a gas-turbine system, a compressor forces air into a combustion chamber. There, it mixes with fuel.
The mixture is ignited by a spark. Hot gases are produced when the fuel burns. They expand and drive
a series of fan blades called a turbine.

Compressor

Fuel injector

Fuel line

Spark plug

Air in

Combustion chamber

Turbine shaft

Turbines

Exhaust

Note : This picture is given as additional information and is not a direct example of the current chapter.
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Fig. 5.22

Fig. 5.21

Example 5.19. A rectangular strut is 150 mm wide and 120 mm thick. It carries a load of 180
kN at an eccentricity of 10 mm in a plane bisecting the thickness as shown in Fig. 5.21. Find the
maximum and minimum intensities of stress in the section.

Solution. Given : b = 150 mm ; d = 120 mm ; P = 180 kN
= 180 × 103 N ; e = 10 mm

We know that cross-sectional area of the strut,
A = b.d = 150 × 120

= 18 × 103 mm2

∴ Direct compressive stress,

σo =
3

3

180 10

18 10

P

A

×=
×

= 10 N/mm2 = 10 MPa
Section modulus for the strut,

Z =
3 2

YY . /12 .

/ 2 6

I d b d b

y b
= =

=
2120 (150)

6
= 450 × 103 mm3

Bending moment, M = P.e = 180 × 103 × 10
= 1.8 × 106 N-mm

∴ Bending stress, σb =
6

3

1.8 10

450 10

M

Z

×=
×

= 4 N/mm2 = 4 MPa
Since σo is greater than σb, therefore the entire cross-section of the strut will be subjected to

compressive stress. The maximum intensity of compressive stress will be at the edge AB and
minimum at the edge CD.

∴ Maximum intensity of compressive stress at the edge AB

= σo + σb = 10 + 4 = 14 MPa Ans.
and minimum intensity of compressive stress at the edge CD

= σo – σb = 10 – 4 = 6 MPa Ans.
Example 5.20. A hollow circular column of external diameter

250 mm and internal diameter 200 mm, carries a projecting bracket
on which a load of 20 kN rests, as shown in Fig. 5.22. The centre of
the load from the centre of the column is 500 mm. Find the stresses
at the sides of the column.

Solution. Given : D = 250 mm ; d = 200 mm ;
P = 20 kN = 20 × 103 N ; e = 500 mm

We know that cross-sectional area of column,

A =
4

π
 (D2 – d2)

= 
4

π
 [(250)2 – (200)2]

= 17 674 mm2

∴ Direct compressive stress,

σo =
3

220 10
1.13 N/mm

17 674

P

A

×= =

= 1.13 MPa
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Wind turbine.

Note : This picture is given as additional information and
is not a direct example of the current chapter.

Transmission
Posit ioning
gears

Turbine head

Control
electronics
adjust position
of wind turbine
head

Internal ladders
allow access to
wind turbine
head

Turbine blade

Vents for cooling
air

Drive shaft

Section modulus for the column,

Z =

4 4–
64

/ 2

D dI

y D

π ⎡ ⎤⎣ ⎦
=  = 

4 4(250) – (200)
64

250 / 2

π ⎡ ⎤⎣ ⎦

=905.8 × 103 mm3

Bending moment,
M = P.e

= 20 × 103 × 500
=10 × 106 N-mm

∴ Bending stress,

σb =
6

3

10 10

905.8 10

M

Z

×=
×

=  11.04 N/mm2

=  11.04 MPa

Since σo is less than σb, therefore right
hand side of the column will be subjected to
compressive stress and the left hand side of the
column will be subjected to tensile stress.

∴  Maximum compressive stress,

σc =  σb + σo = 11.04 + 1.13

=  12.17 MPa Ans.

and maximum tensile stress,

σt = σb – σo = 11.04 – 1.13 = 9.91 MPa Ans.
Example 5.21. A masonry pier of width 4 m and thickness 3 m, supports a load of 30 kN as

shown in Fig. 5.23. Find the stresses developed at each corner of the pier.

Solution. Given: b = 4 m ; d = 3 m ; P = 30 kN ; ex = 0.5 m ; ey = 1 m

We know that cross-sectional area of the pier,

A = b × d = 4 × 3 = 12 m2

Moment of inertia of the pier about X-axis,

IXX = 
3 3

4. 4 3
9 m

12 12

b d ×= =

and moment of inertia of the pier about Y-axis,

IYY = 
3 3

4. 3 4
16 m

12 12

d b ×= =

Distance between X-axis and the corners A and B,

x = 3 / 2 = 1.5 m
Distance between Y-axis and the corners A and C,

y = 4 / 2 = 2 m

We know that stress at corner A,

σA =
XX YY

. .. . yx
P e yP e xP

A I I
+ + ... [Q  At A, both x and y are +ve]

Fig. 5.23
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=
30 30 0.5 1.5 30 1 2

12 9 16

× × × ×+ +

= 2.5 + 2.5 + 3.75 = 8.75 kN/m2 Ans.
Similarly stress at corner B,

σB =
XX YY

. .. .
– yx

P e yP e xP

A I I
+ ... [Q  At B, x is +ve and y is –ve]

=
30 30 0.5 1.5 30 1 2

–
12 9 16

× × × ×+

= 2.5 + 2.5 – 3.75 = 1.25 kN/m2 Ans.
Stress at corner C,

σC =
XX YY

. .. .
– yx

P e yP e xP

A I I
+ ... [At C, x is –ve and y is +ve]

=
30 30 0.5 1.5 30 1 2

–
12 9 16

× × × ×+

= 2.5 – 2.5 + 3.75 = 3.75 kN/m2 Ans.
and stress at corner  D,

σD =
XX YY

. .. .
– – yx

P e yP e xP

A I I
... [At D, both x and y are – ve]

=
30 30 0.5 1.5 30 1 2

– –
12 9 16

× × × ×

= 2.5 – 2.5 – 3.75 = – 3.75 kN/m2 = 3.75 kN/m2 (tensile) Ans.

Example 5.22. A mild steel link, as shown in Fig. 5.24 by full lines, transmits a pull of 80 kN.
Find the dimensions b and t if b = 3t.
Assume the permissible tensile stress as
70 MPa. If the original link is replaced
by an unsymmetrical one, as shown by
dotted lines in Fig. 5.24, having the same
thickness t, find the depth b1, using the
same permissible stress as before.

Solution. Given : P = 80 kN
= 80 × 103 N ; σt = 70 MPa = 70 N/mm2

When the link is in the position shown by full lines in Fig. 5.24, the area of cross-section,

A = b × t = 3 t × t = 3 t 2 ...(Q b = 3 t )

We know that tensile load (P),

80 × 103 = σt × A = 70 × 3 t2 = 210 t2

∴ t2 = 80 × 103 / 210 = 381  or  t = 19.5 say 20 mm Ans.

and b = 3 t  = 3 × 20 = 60 mm Ans.

When the link is in the position shown by dotted lines, it will be subjected to direct stress as well
as bending stress. We know that area of cross-section,

A1 = b1 × t

Fig. 5.24
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Fig. 5.26

∴ Direct tensile stress,

σo =
1

=
×

P P

A b t

and bending stress, σb = 2
1

. 6 .

( )
= =M P e P e

Z Z t b
...

2
1( )

6

⎛ ⎞
=⎜ ⎟

⎝ ⎠
Q

t b
Z

∴Total stress due to eccentric loading

= 2
1 1 11

6 . 6
1

.( )

⎛ ⎞σ + σ = + = +⎜ ⎟× ⎝ ⎠
b o

P e P P e

b t t b bt b

Since the permissible tensile stress is the same as 70 N/mm2, therefore

70 =
3 3

1

1 1 1

680 10 16 10
1

20 2

×× ×⎛ ⎞+ =⎜ ⎟×⎝ ⎠

b

b b b
... 1Eccentricity,

2
⎛ ⎞=⎜ ⎟
⎝ ⎠
Q

b
e

∴ b1 = 16 × 103 / 70 = 228.6 say 230 mm Ans.
Example 5.23. A cast-iron link, as shown in Fig. 5.25, is to carry a load of 20 kN. If the tensile

and compressive stresses in the link are not to exceed 25 MPa and 80 MPa respectively, obtain the
dimensions of the cross-section of the link at the middle of its length.

Fig. 5.25

Solution. Given : P = 20 kN = 20 × 103 N ; σt(max) = 25 MPa = 25 N/mm2 ; σc(max) = 80 MPa
= 80 N/mm2

Since the link is subjected to eccentric loading, therefore there
will be direct tensile stress as well as bending stress. The bending
stress at the bottom of the link is tensile and in the upper portion is
compressive.

We know that cross-sectional area of the link,

A = 3a × a + 2 × 
2

3

a
 × 2a

= 5.67 a2 mm2

∴  Direct tensile stress,

σo =
3

2
2 2

20 10 3530
N/mm

5.67

P

A a a

×= =

Now let us find the position of centre of gravity (or neutral axis) in order to find the bending
stresses.

Let y = Distance of neutral axis (N.A.) from the bottom of the link as shown
in Fig. 5.26.

∴ y =

2
2

2

4
3 2 2

2 3 1.2 mm
5.67

a a
a a

a
a

× + × ×
=
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Moment of inertia about N.A.,

3
3 2

2 2 2

2
(2 )3 433 (1.2 – 0.5 ) 2 (2 – 1.2 )

12 12 3

a aa a a
I a a a a a

⎡ ⎤×⎡ ⎤ ⎢ ⎥×= + + +⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

= (0.25 a4 + 1.47 a4) + 2 (0.44a4 + 0.85 a4) = 4.3 a4 mm4

Distance of N.A. from the bottom of the link,

yt = y  = 1.2 a mm

Distance of N.A. from the top of the link,

yc = 3 a – 1.2 a = 1.8 a mm

Eccentricity of the load (i.e. distance of N.A. from the point of application of the load),

e = 1.2 a – 0.5 a = 0.7 a mm

We know that bending moment exerted on the section,

M = P.e = 20 × 103 × 0.7 a = 14 × 103 a N-mm

∴ Tensile stress in the bottom of the link,

σt =
t

M

Z
  =

3

4 2

. 14 10 1.2 3907

/ 4.3

× ×= = =t

t

M yM a a

I y I a a

and compressive stress in the top of the link,

σc =
3

4 2

. 14 10 1.8 5860

/ 4.3
c

c c

M yM M a a

Z I y I a a

× ×= = = =

We know that maximum tensile stress [σt (max)],

25 = 2 2 2

3907 5860 9767
t c

a a a
σ + σ = + =

∴ a2 = 9767 / 25 = 390.7 or a = 19.76 mm ...(i)

and maximum compressive stress [σc(max)],

80 = σc – σ0 =  2 2 2

5860 3530 2330
–

a a a
=

∴ a2 = 2330 / 80 = 29.12 or a = 5.4 mm ...(ii)

We shall take the larger of the two values, i.e.

a = 19.76 mm Ans.

Example 5.24.  A horizontal pull P = 5 kN is exerted by the belting on one of the cast iron wall
brackets which carry a factory shafting. At a point 75 mm from the wall, the bracket has a T-section
as shown in Fig. 5.27. Calculate the maximum stresses in the flange and web of the bracket due to the
pull.
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Fig. 5.27

Solution. Given : Horizontal pull, P = 5 kN = 5000 N

Since the section is subjected to eccentric loading, therefore there will be direct tensile stress as
well as bending stress. The bending stress at the flange is tensile and in the web is compressive.

We know that cross-sectional area of the section,

A = 60 × 12 + (90 – 12)9 = 720 + 702 = 1422 mm2

∴  Direct tensile stress,σ0 =
5000

1422

P

A
=  = 3.51 N/mm2 = 3.51 MPa

Now let us find the position of neutral axis in order to determine the bending stresses. The
neutral axis passes through the centre of gravity of the section.

Let y = Distance of centre of gravity (i.e. neutral axis) from top of the flange.

∴ y =

12 78
60 12 78 9 12

2 2 28.2 mm
720 702

⎛ ⎞× × + × +⎜ ⎟
⎝ ⎠ =

+
Moment of inertia of the section about N.A.,

I =
3 3

2 260 (12) 9 (78)
720 (28.2 – 6) 702 (51 – 28.2)

12 12

⎡ ⎤ ⎡ ⎤
+ + +⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

= (8640 + 354 845) + (355 914 + 364 928) = 1 084 327 mm4

This picture shows a reconnoissance helicopter of air force. Its dark complexion absorbs light that falls
on its surface. The flat and sharp edges deflect radar waves and they do not return back to the radar.
These factors make it difficult to detect the helicopter.

Note : This picture is given as additional information and is not a direct example of the current chapter.
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Fig. 5.28

Distance of N.A. from the top of the flange,

yt = y  = 28.2 mm

Distance of N.A. from the bottom of the web,

yc = 90 – 28.2 = 61.8 mm

Distance of N.A. from the point of application of the load (i.e. eccentricity of the load),

e = 50 + 28.2 = 78.2 mm

We know that bending moment exerted on the section,

M = P × e = 5000 × 78.2 = 391 × 103 N-mm

∴ Tensile stress in the flange,

σt =
3

2. 391 10 28.2
10.17 N/mm

/ 1 084 327
t

t t

M yM M

Z I y I

× ×= = = =

= 10.17 MPa

and compressive stress in the web,

σc =
3

2. 391 10 61.8
22.28 N/mm

/ 1 084 327
c

c c

M yM M

Z I y I

× ×= = = =

= 22.28 MPa

We know that maximum tensile stress in the flange,

σt(max) = σb + σo = σt + σo = 10.17 + 3.51 = 13.68 MPa Ans.
and maximum compressive stress in the flange,

σc(max) = σb – σo = σc – σo = 22.28 – 3.51 = 18.77 MPa Ans.

Example 5.25. A mild steel bracket as shown in Fig. 5.28, is subjected to a pull of 6000 N
acting at 45° to its horizontal axis. The bracket has a rectangular section whose depth is twice the
thickness. Find the cross-sectional dimensions of the bracket, if the permissible stress in the material
of the bracket is limited to 60 MPa.

Solution. Given : P = 6000 N ; θ = 45° ; σ = 60 MPa = 60 N/mm2

Let t = Thickness of the section in mm, and

b = Depth or width of the section = 2 t ...(Given)

We know that area of cross-section,

A = b × t = 2 t × t = 2 t2 mm2

and section modulus, Z =
2

6

t b×

=
2(2 )

6

t t

=
3

34
mm

6

t

Horizontal component of the load,

PH = 6000 cos 45°

= 6000 × 0.707

= 4242 N

∴ Bending moment due to horizontal
component of the load,

MH = PH × 75 = 4242 × 75 = 318 150 N-mm
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A little consideration will show that

the bending moment due to the horizontal
component of the load induces tensile
stress on the upper surface of the bracket
and compressive stress on the lower
surface of the bracket.

∴ Maximum bending stress on
the upper surface due to horizontal
component,

                                   σbH = HM

Z

            3

318 150 6

4

×=
t

      
2

3

477 225
N/mm (tensile)=

t
Vertical component of the load,

PV = 6000 sin 45° = 6000 × 0.707 = 4242 N
∴ Direct stress due to vertical component,

σoV = 2V
2 2

4242 2121
N/mm

2

P

A t t
= =  (tensile)

Bending moment due to vertical component of the load,

MV = PV × 130 = 4242 × 130 = 551 460 N-mm

This bending moment induces tensile stress on the upper surface and compressive stress on the
lower surface of the bracket.

∴ Maximum bending stress on the upper surface due to vertical component,

σbV = 2V
3 3

551 460 6 827 190
N/mm

4

M

Z t t

×= =  (tensile)

and total tensile stress on the upper surface of the bracket,

σ = 3 2 3 3 2

477 225 2121 827 190 1 304 415 2121

t t t t t
+ + = +

Since the permissible stress (σ) is 60 N/mm2, therefore

3 2

1 304 415 2121

t t
+ = 60  or  

3 2

21 740 35.4
1

t t
+ =

∴ t = 28.4 mm Ans. ... (By hit and trial)

and b = 2 t  = 2 × 28.4 = 56.8 mm Ans.
Example 5.26. A C-clamp as shown in Fig. 5.29, carries a load P = 25 kN. The cross-section

of the clamp at X-X is rectangular having width equal to twice thickness. Assuming that the clamp is
made of steel casting with an allowable stress of 100 MPa, find its dimensions. Also determine the
stresses at sections Y-Y and Z-Z.

Solution. Given : P = 25 kN = 25 × 103 N ; σt(max) = 100 MPa = 100 N/mm2

Dimensions at X-X
Let t = Thickness of the section at X-X in mm, and

b = Width of the section at X-X in mm = 2 t ...(Given)

Schematic of a hydel  turbine.
Note : This picture is given as additional information
and is not a direct example of the current chapter.

Water

Curved
blades

Water

Generator
rotor

Turbine

shaft
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We know that cross-sectional area at X-X,

A = b × t = 2 t × t = 2 t2 mm2

∴ Direct tensile stress at X-X,

σo =
3

2

25 10

2

P

A t

×=

=
3

2
3

12.5 10
N/mm

t

×

Bending moment at X-X due to the load P,

M = P × e = 25 × 103 × 140

= 3.5 × 106 N-mm

Section modulus, Z =
2 2 3

3. (2 ) 4
mm

6 6 6

t b t t t= =

...(Q b = 2t)

∴ Bending stress at X-X,

σb =
6 6

2
3 3

3.5 10 6 5.25 10
N/mm

4

M

Z t t

× × ×= =  (tensile)

We know that the maximum tensile stress [σt (max)],

100 = σo + σb = 
3 6

2 3

12.5 10 5.25 10

t t

× ×+

or      
3

2 3

125 52.5 10
– 1 0

t t

×+ =

∴ t = 38.5 mm Ans. ...(By hit and trial)

and b = 2 t = 2 × 38.5 = 77 mm Ans.
Stresses at section Y-Y

Since the cross-section of frame is uniform throughout, therefore cross-sectional area of the
frame at section Y-Y,

A = b sec 45° × t = 77 × 1.414 × 38.5 = 4192 mm2

Component of the load perpendicular to the section

= P cos 45° = 25 × 103 × 0.707 = 17 675 N

This component of the load produces uniform tensile stress over the section.

∴ Uniform tensile stress over the section,

σ = 17 675 / 4192 = 4.2 N/mm2 = 4.2 MPa

Component of the load parallel to the section

= P sin 45° = 25 × 103 × 0.707 = 17 675 N

This component of the load produces uniform shear stress over the section.

∴ Uniform shear stress over the section,

τ = 17 675 / 4192 = 4.2 N/mm2 = 4.2 MPa

Fig. 5.29
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We know that section modulus,

Z =
2 2

3 3( sec 45 ) 38.5 (77 1.414)
76 10 mm

6 6

t b ° ×= = ×

Bending moment due to load (P) over the section Y-Y,

M = 25 × 103 × 140 = 3.5 × 106 N-mm

∴ Bending stress over the section,

σb =
6

3

3.5 10

76 10

M

Z

×=
×

 = 46 N/mm2 = 46 MPa

Due to bending, maximum tensile stress at the inner corner and the maximum compressive stress
at the outer corner is produced.

∴ Maximum tensile stress at the inner corner,

σt = σb + σo = 46 + 4.2 = 50.2 MPa

and maximum compressive stress at the outer corner,

σc = σb – σo = 46 – 4.2 = 41.8 MPa

Since the shear stress acts at right angles to the tensile and compressive stresses, therefore
maximum principal stress (tensile) on the section Y-Y at the inner corner

=
2 2 2 21 50.2 1

( ) 4 (50.2) 4 (4.2) MPa
2 2 2 2

t
t

σ ⎡ ⎤ ⎡ ⎤+ σ + τ = + + ×⎣ ⎦⎣ ⎦

= 25.1 + 25.4 = 50.5 MPa Ans.

and maximum principal stress (compressive) on section Y-Y at outer corner

=
2 2 2 21 41.8 1

( ) 4 (41.8) 4 (4.2) MPa
2 2 2 2
c

c
σ ⎡ ⎤ ⎡ ⎤+ σ + τ = + + ×⎣ ⎦⎣ ⎦

= 20.9 + 21.3 = 42.2 MPa Ans.

Maximum shear stress = 2 2 2 21 1
2 2

( ) 4 (50.2) 4 (4.2) 25.4 MPat
⎡ ⎤ ⎡ ⎤σ + τ = + × =⎣ ⎦⎣ ⎦  Ans.

Stresses at section Z-Z

We know that bending moment at section Z-Z,

= 25 × 103 × 40 = 1 × 106 N-mm

and section modulus, Z =
2 2. 38.5 (77)

6 6

t b =  = 38 × 103 mm3

∴ Bending stress at section Z-Z,

σb =
6

3

1 10

38 10

M

Z

×=
×

 = 26.3 N/mm2 = 26.3 MPa Ans.

The bending stress is tensile at the inner edge and compressive at the outer edge. The magnitude
of both these stresses is 26.3 MPa. At the neutral axis, there is only transverse shear stress. The shear
stress at the inner and outer edges will be zero.

We know that *maximum transverse shear stress,

τmax = 1.5 × Average shear stress = 
325 10

1.5 1.5
. 77 38.5

P

b t

×× = ×
×

= 12.65 N/mm2 = 12.65 MPa Ans.

* Refer Art. 5.16
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5.16 Shear Stresses in Beams
In the previous article, we have assumed that no shear force is acting on the section. But, in

actual practice, when a beam is loaded, the shear force at a section always comes into play along with
the bending moment. It has been observed that the effect of the shear stress, as compared to the
bending stress, is quite negligible and is of not much importance. But, sometimes, the shear stress at
a section is of much importance in the design. It may be noted that the shear stress in a beam is not
uniformly distributed over the cross-section but varies from zero at the outer fibres to a maximum at
the neutral surface as shown in Fig. 5.30 and Fig. 5.31.

Fig. 5.30. Shear stress in a rectangular beam. Fig. 5.31. Shear stress in a circular beam.

The shear stress at any section acts in a plane at right angle to the plane of the bending stress and
its value is given by

τ = .
.

F
A y

I b
×

Note : This picture is given as additional information and is not a direct example of the current chapter.

General layout of a hydroelectric plant.

Sluice gate Dam

Water from the
reservoir
passes through
a gate

The flow of
water makes
the turbine shaft
turn

Turbines drive
generator to
produce
electricity

Cables carry
away the
electricity for
use

Excess water
flows over
spillway

River

Spillway
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where F = Vertical shear force acting on the section,

I = Moment of inertia of the section about the neutral axis,

b = Width of the section under consideration,

A = Area of the beam above neutral axis, and

y = Distance between the C.G. of the area and the neutral axis.

The following values of maximum shear stress for different cross-section of beams may be noted
:

1. For a beam of rectangular section, as shown in Fig. 5.30, the shear stress at a distance y from
neutral axis is given by

τ =
2

2
3

3
–

2 4 2 .

F h F
y

I b h

⎛ ⎞
=⎜ ⎟

⎝ ⎠
 (h2 – 4y2) ...

3.

12

⎡ ⎤
=⎢ ⎥

⎣ ⎦
Q

b h
I

and maximum shear stress,

τmax =
3

2 .

F

b h
... Substituting

2
⎛ ⎞=⎜ ⎟
⎝ ⎠

h
y

= 1.5 τ(average) ... ( ) Area .
⎡ ⎤τ = =⎢ ⎥
⎣ ⎦
Q average

F F

b h

The distribution of stress is shown in Fig. 5.30.

2. For a beam of circular section as shown in Fig. 5.31, the shear stress at a distance y from
neutral axis is given by

τ =
2

2 2 2
4

16
– ( – 4 )

3 4 3

F d F
y d y

I d

⎛ ⎞
=⎜ ⎟

⎝ ⎠ π
and the maximum shear stress,

τmax =
2

4

3
4

F

d
π×

... Substituting
2

⎛ ⎞=⎜ ⎟
⎝ ⎠

d
y

= ( )
4

3 averageτ ... ( )
2Area

4

⎡ ⎤τ = =⎢ ⎥π
⎢ ⎥
⎣ ⎦

Q average
F F

d

The distribution of stress is shown in Fig. 5.31.

3. For a beam of I-section as shown in Fig. 5.32, the maximum shear stress occurs at the neutral
axis and is given by

τmax =
2

2 2 .
( – )

. 8 8

F B b h
H h

I b

⎡ ⎤
+⎢ ⎥

⎣ ⎦

Fig. 5.32
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Shear stress at the joint of the web and the flange

=
8

F

I
 (H2 – h2)

and shear stress at the junction of the top of the web and bottom of the flange

=
8

F B

I b
×  (H2 – h2)

The distribution of stress is shown in Fig. 5.32.

Example 5.27. A beam of I-section 500 mm deep and 200 mm wide has flanges 25 mm
thick and web 15 mm thick, as shown in Fig. 5.33 (a). It carries a shearing force of 400 kN. Find
the maximum intensity of shear stress in the section, assuming the moment of inertia to be
645 × 106 mm4. Also find the shear stress at the joint and at the junction of the top of the web
and bottom of the flange.

Solution. Given : H = 500 mm ; B = 200 mm ; h = 500 – 2 × 25 = 450 mm ; b = 15 mm ;
F = 400 kN = 400 × 103 N ; I = 645 × 106 mm4

Fig. 5.33

Maximum intensity of shear stress
We know that maximum intensity of shear stress,

τmax =
2

2 2 .
( – )

. 8 8

F B b h
H h

I b

⎡ ⎤
+⎢ ⎥

⎣ ⎦

=
3 2

2 2 2
6

400 10 200 15 450
(500 – 450 ) N/mm

8 8645 10 15

⎡ ⎤× ×+⎢ ⎥
⎣ ⎦× ×

= 64.8 N/mm2 = 64.8 MPa Ans.

The maximum intensity of shear stress occurs at neutral axis.

Note :The maximum shear stress may also be obtained by using the following relation :

τmax =
. .

.

F A y

I b

We know that area of the section above neutral axis,

A = 200 × 25 + 
450

2
 × 15 = 8375 mm2
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Distance between the centre of gravity of the area and neutral axis,

y = 200 25 (225 12.5) 225 15 112.5
187 mm

8375

× + + × × =

∴ maxτ =
3

6

400 10 8375 187

645 10 15

× × ×
× ×

 = 64.8 N/mm2 = 64.8 MPa Ans.

Shear stress at the joint of the web and the flange
We know that shear stress at the joint of the web and the flange

=
3

2 2 2 2 2
6

400 10
( – ) (500) – (450) N/mm

8 8 645 10

F
H h

I

× ⎡ ⎤= ⎣ ⎦× ×
= 3.7 N/mm2 = 3.7 MPa Ans.

Shear stress at the junction of the top of the web and bottom of the flange
We know that shear stress at junction of the top of the web and bottom of the flange

=
3

2 2 2 2 2
6

400 10 200
( – ) (500) – (450) N/mm

8 158 645 10

F B
H h

I b

× ⎡ ⎤× = × ⎣ ⎦× ×
= 49 N/mm2 = 49 MPa Ans.

The stress distribution is shown in Fig. 5.33 (b)

EEEEEXEXEXEXEXERRRRRCISECISECISECISECISESSSSS

1. A steel shaft 50 mm diameter and 500 mm long is subjected to a twisting moment of 1100 N-m, the
total angle of twist being 0.6°. Find the maximum shearing stress developed in the shzaft and modulus
of rigidity. [Ans. 44.8 MPa; 85.6 kN/m2]

2. A shaft is transmitting 100 kW at 180 r.p.m. If the allowable stress in the material is 60 MPa, find the
suitable diameter for the shaft. The shaft is not to twist more than 1° in a length of 3 metres.
Take C = 80 GPa. [Ans. 105 mm]

3. Design a suitable diameter for a circular shaft required to transmit 90 kW at 180 r.p.m. The shear
stress in the shaft is not to exceed 70 MPa and the maximum torque exceeds the mean by 40%. Also
find the angle of twist in a length of 2 metres. Take C = 90 GPa. [Ans. 80 mm; 2.116°]

4. Design a hollow shaft required to transmit 11.2 MW at a speed of 300 r.p.m. The maximum shear
stress allowed in the shaft is 80 MPa and the ratio of the inner diameter to outer diameter is 3/4.

[Ans. 240 mm; 320 mm]

5. Compare the weights of equal lengths of hollow shaft and solid shaft to transmit a given torque for the
same maximum shear stress. The material for both the shafts is same and inside diameter is 2/3 of
outside diameter in case of hollow shaft. [Ans. 0.56]

6. A spindle as shown in Fig. 5.34, is a part of an industrial brake and is loaded as shown. Each load P
is equal to 4 kN and is applied at the mid point of its bearing. Find the diameter of the spindle, if the
maximum bending stress is 120 MPa. [Ans. 22 mm]

Fig. 5.34

7. A cast iron pulley transmits 20 kW at 300 r.p.m. The diameter of the pulley is 550 mm and has four
straight arms of elliptical cross-section in which the major axis is twice the minor axis. Find the
dimensions of the arm, if the allowable bending stress is 15 MPa. [Ans. 60 mm; 30 mm]
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8. A shaft is supported in bearings, the distance between their centres being 1 metre. It carries a pulley in
the centre and it weighs 1 kN. Find the diameter of the shaft, if the permissible bending stress for the
shaft material is 40 MPa. [Ans. 40 mm]

9. A punch press, used for stamping sheet metal, has a punching capacity of 50 kN. The section of the
frame is as shown in Fig. 5.35. Find the resultant stress at the inner and outer fibre of the section.

[Ans. 28.3 MPa (tensile); 17.7 MPa (compressive)]

Fig. 5.35 Fig. 5.36

10. A crane hook has a trapezoidal section at A-A as shown in Fig. 5.36. Find the maximum stress at
points P and Q. [Ans. 118 MPa (tensile); 62 MPa (compressive)]

11. A rotating shaft of 16 mm diameter is made of plain carbon steel. It is subjected to axial load of 5000
N, a steady torque of 50 N-m and maximum bending moment of 75 N-m. Calculate the factor of safety
available based on 1. Maximum normal stress theory; and 2. Maximum shear stress theory.
Assume yield strength as 400 MPa for plain carbon steel. If all other data remaining same, what
maximum yield strength of shaft material would be necessary using factor of safety of 1.686 and
maximum distortion energy theory of failure. Comment on the result you get.

[Ans. 1.752; 400 MPa]
12. A hand cranking lever, as shown in Fig. 5.37, is used to start a truck engine by applying a force

F = 400 N. The material of the cranking lever is 30C8 for which yield strength = 320 MPa; Ultimate
tensile strength = 500 MPa ; Young’s modulus = 205 GPa ; Modulus of rigidity = 84 GPa and poisson’s
ratio = 0.3.

Fig. 5.37
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Assuming factor of safety to be 4 based on yield strength, design the diameter ‘d’ of the lever at section
X-X near the guide bush using : 1. Maximum distortion energy theory; and 2. Maximum shear stress
theory. [Ans. 28.2 mm; 28.34 mm]

13. An offset bar is loaded as shown in Fig. 5.38. The weight of the bar may be neglected. Find the
maximum offset (i.e., the dimension x) if allowable stress in tension is limited to 70 MPa.

[Ans. 418 mm]

Fig. 5.38 Fig. 5.39

14. A crane hook made from a 50 mm diameter bar is shown in Fig. 5.39. Find the maximum tensile stress
and specify its location. [Ans. 35.72 MPa at A]

15. An overhang crank, as shown in Fig. 5.40 carries a tangential load of 10 kN at the centre of the
crankpin. Find the maximum principal stress and the maximum shear stress at the centre of the crank-
shaft bearing. [Ans. 29.45 MPa; 18.6 MPa]

Fig. 5.40 Fig. 5.41

16. A steel bracket is subjected to a load of 4.5 kN, as shown in Fig. 5.41. Determine the required
thickness of the section at A-A in order to limit the tensile stress to 70 MPa. [Ans. 9 mm]
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17. A wall bracket, as shown in Fig. 5.42, is subjected to a pull of P = 5 kN, at 60° to the vertical. The
cross-section of bracket is rectangular having b = 3t . Determine the dimensions b and t if the stress
in the material of the bracket is limited to 28 MPa. [Ans. 75 mm; 25 mm]

Fig. 5.42 Fig. 5.43

18. A bracket, as shown in Fig. 5.43, is bolted to the framework of a machine which carries a load P. The
cross-section at 40 mm from the fixed end is rectangular with dimensions, 60 mm × 30 mm. If the
maximum stress is limited to 70 MPa, find the value of P.

[Ans. 3000 N]

19. A T-section of a beam, as shown in Fig. 5.44, is subjected to a vertical shear force of 100 kN. Calcu-
late the shear stress at the neutral axis and at the junction of the web and the
flange. The moment of inertia at the neutral axis is 113.4 × 106 mm4.

[Ans. 11.64 MPa; 11 MPa; 2.76 MPa]

                       

Fig. 5.44 Fig. 5.45

20. A beam of channel section, as shown in Fig. 5.45, is subjected to a vertical shear force of 50 kN. Find
the ratio of maximum and mean shear stresses. Also draw the distribution of shear stresses.

[Ans. 2.22]

QQQQQUEUEUEUEUESTSTSTSTSTIONSIONSIONSIONSIONS

1. Derive a relation for the shear stress developed in a shaft, when it is subjected to torsion.

2. State the assumptions made in deriving a bending formula.
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3. Prove the relation: M/I = σ/y = E/R

where M = Bending moment; I = Moment of inertia; σ = Bending stress in a fibre at a distance y from
the neutral axis; E = Young’s modulus; and R = Radius of curvature.

4. Write the relations used for maximum stress when a machine member is subjected to tensile or com-
pressive stresses along with shearing stresses.

5. Write short note on maximum shear stress theory verses maximum strain energy theory.

6. Distinguish clearly between direct stress and bending stress.

7. What is meant by eccentric loading and eccentricity?

8. Obtain a relation for the maximum and minimum stresses at the base of a symmetrical column,
when it is subjected to

(a) an eccentric load about one axis, and (b) an eccentric load about two axes.

OBJECTOBJECTOBJECTOBJECTOBJECTIVE IVE IVE IVE IVE TTTTTYPYPYPYPYPE QE QE QE QE QUEUEUEUEUESTSTSTSTSTIONSIONSIONSIONSIONS

1. When a machine member is subjected to torsion, the torsional shear stress set up in the member is

(a) zero at both the centroidal axis and outer surface of the member

(b) Maximum at both the centroidal axis and outer surface of the member

(c) zero at the centroidal axis and maximum at the outer surface of the member

(d) none of the above

2. The torsional shear stress on any cross-section normal to the axis is ......... the distance from the centre
of the axis.

(a) directly proportional to (b) inversely proportional to

3. The neutral axis of a beam is subjected to

(a) zero stress (b) maximum tensile stress

(c) maximum compressive stress (d) maximum shear stress

4. At the neutral axis of a beam,

(a) the layers are subjected to maximum bending stress

(b) the layers are subjected to tension (c) the layers are subjected to compression

(d) the layers do not undergo any strain

5. The bending stress in a curved beam is

(a) zero at the centroidal axis (b) zero at the point other than centroidal axis

(c) maximum at the neutral axis (d) none of the above

6. The maximum bending stress, in a curved beam having symmetrical section, always occur, at the

(a) centroidal axis (b) neutral axis

(c) inside fibre (d) outside fibre

7. If d = diameter of solid shaft and τ = permissible stress in shear for the shaft material, then torsional
strength of shaft is written as

(a)
4

32

π τd (b) d loge τ

(c)
3

16

π τd (d)
3

32

π τd

8. If di and do are the inner and outer diameters of a hollow shaft, then its polar moment of inertia is

(a)
4 4( ) – ( )

32

π ⎡ ⎤⎣ ⎦o id d (b)
3 3( ) – ( )

32

π ⎡ ⎤⎣ ⎦o id d

(c)
2 2( ) – ( )

32

π ⎡ ⎤⎣ ⎦o id d (d) ( – )
32

π
o id d
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9. Two shafts under pure torsion are of identical length and identical weight and are made of same
material. The shaft A is solid and the shaft B is hollow. We can say that

(a) shaft B is better than shaft A

(b) shaft A is better than shaft B

(c) both the shafts are equally good

10. A solid shaft transmits a torque T. The allowable shear stress is τ. The diameter of the shaft is

(a) 3
16

π τ
T

(b) 3
32

π τ
T

(c) 3
64

π τ
T

(d) 3
16

τ
T

11. When a machine member is subjected to a tensile stress (σt) due to direct load or bending and a shear
stress (τ) due to torsion, then the maximum shear stress induced in the member will be

(a) 2 21
2

( ) 4⎡ ⎤σ + τ⎣ ⎦t (b) 2 21
2

( ) – 4⎡ ⎤σ τ⎣ ⎦t

(c) 2 2( ) 4⎡ ⎤σ + τ⎣ ⎦t (d) (σt)
2 + 4 τ2

12. Rankine’s theory is used for

(a) brittle materials (b) ductile materials

(c) elastic materials (d) plastic materials

13. Guest’s theory is used for

(a) brittle materials (b) ductile materials

(c) elastic materials (d) plastic materials

14. At the neutral axis of a beam, the shear stress is

(a) zero (b) maximum

(c) minimum

15. The maximum shear stress developed in a beam of rectangular section is ........ the average shear
stress.

(a) equal to (b) 4
3  times

(c) 1.5 times

ANSWEANSWEANSWEANSWEANSWERRRRRSSSSS

1. (b) 2. (a) 3. (a) 4. (d) 5. (b)

6. (c) 7. (c) 8. (a) 9. (a) 10. (a)

11. (a) 12. (a) 13. (b) 14. (b) 15. (c)
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