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5.1 Introduction

Sometimes machine parts are subjected to pure
torsion or bending or combination of both torsion and
bending stresses. We shall now discuss these stresses in
detail in the following pages.

5.2 Torsional Shear Stress

When a machine member is subjected to the action
of two equal and opposite couplesacting in parallel planes
(or torque or twisting moment), then the machine member
issaid to be subjected totorsion. The stressset up by torsion
isknown astorsional shear stress. It iszero at the centroidal
axis and maximum at the outer surface.

Consider ashaft fixed at one end and subjected to a
torque (T) at the other end asshowninFig. 5.1. Asaresult
of thistorque, every cross-section of the shaft is subjected
to torsional shear stress. We have discussed above that the
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torsional shear stress is zero at the centroidal axis and maximum at the outer surface. The
maximum torsional shear stressat the outer surface of the shaft may be obtained from thefollowing
equation:

% _ % _ ? 0,
where T = Torsional shear stressinduced at the outer surface of the shaft or maximum
shear stress,

r = Radius of the shaft,
T = Torque or twisting moment,
J = Second moment of area of the section about its polar axis or polar moment of
inertia,
C = Modulus of rigidity for the shaft material,
| = Length of the shaft, and
0 = Angleof twistinradianson alength .

Y

A
Y

Fig. 5.1. Torsional shear stress.

The equation (i) is known astorsion equation. It is based on the following assumptions:

1. Thematerial of the shaft is uniform throughout.

2. Thetwist along the length of the shaft isuniform.

3. Thenormal cross-sections of the shaft, which were plane and circular before twist, remain
plane and circular after twist.

4. All diameters of the normal cross-section which were straight before twist, remain straight
with their magnitude unchanged, after twist.

5. The maximum shear stressinduced in the shaft due to the twisting moment does not exceed
itselastic limit value.

Notes: 1. Sincethetorsional shear stress on any cross-section normal to the axisis directly proportional to the
distance from the centre of the axis, therefore thetorsional shear stress at adistance x from the centre of the shaft
isgiven by

A

X

= |la

x
2. From equation (i), we know that
T

=X o T:rxi
J r r
For a solid shaft of diameter (d), the polar moment of inertia,
‘]:|XX+|Y\(:£Xd4+£Xd4=£Xd4
64 64 32
T = ixExdin 2= wrxd?
32 d 16
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In case of a hollow shaft with external diameter (d,) and internal diameter (d;), the polar moment of
inertia,

[
|

d
= o [[@)*~ (@) andr = 2

-
1]

T g 2T [ (dg) = (d)*
rxﬁt(do)—(du]xd—o—mx{ T ]

% X T (dg)? (1— k)

(Substituting, k=3 j
do
3. Theexpression (C x J) iscaled torsional rigidity of the shaft.

4. The strength of the shaft means the maximum torque transmitted by it. Therefore, in order to design a
shaft for strength, the above equations are used. The power transmitted by the shaft (in watts) is given by

27 N.T ( 27 N)
P = =T.0 o=
60 60
where T = Torque transmitted in N-m, and

o = Angular speed in rad/s.

Example 5.1. A shaft is transmitting 100 kW at 160 r.p.m. Find a suitable diameter for the
shaft, if the maximum torque transmitted exceeds the mean by 25%. Take maximum allowable shear
stressas 70 MPa.

Solution. Given: P =100 kW = 100 x 103 W ; N=160r.p.m; Toax=125T i T=70MPa
=70 N/mm?

Let Trean = Mean torque transmitted by the shaft in N-m, and

d = Diameter of the shaft in mm.
We know that the power transmitted (P),

2N . Toean 271X 160 X Ty

100 x 10° = =16.76T, .,

60 60
T, = 100 x 10%16.76 = 5966.6 N-m

A Helicopter propeller shaft has fo bear torsional, tensile, as well as bending stresses.
Note : This picture is given as additional information and is not a direct example of the current chapter.
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and maximum torque transmitted,
Toex = 1.25 % 5966.6 = 7458 N-m = 7458 x 10° N-mm
We know that maximum torque (T,,),

I
7458 x 108 = — xtxd3 :_6 x70xd3=13.75d3

T 16 1
d3 = 7458 x 103/13.75 =542.4 x 10° or d=81.5mm Ans.

Example 5.2. A steel shaft 35 mmin diameter and 1.2 m long held rigidly at one end has a
hand wheel 500 mmin diameter keyed to the other end. The modulus of rigidity of steel is 80 GPa.
1. What |load applied to tangent to the rim of the wheel produce a torsional shear of 60 MPa?

2. How many degrees will the wheel turn when thisload is applied?
| =1.2 m= 1200 mm; D = 500 mm or

Solution. Given : d =35 mmorr = 17.5 mm;
R =250 mm ; C = 80 GPa= 80 kN/mm? = 80 x 103 N/mm?; t = 60 MPa= 60 N/mm?

1. Load applied to the tangent to the rim of the wheel
Let W =Load applied (in newton) to tangent to the rim of the wheel.

We know that torque applied to the hand wheel,
T = WR=Wx 250 = 250 W N-mm

and polar moment of inertia of the shaft,

T
J= 2 ><d4— - (35)4—14734>< 10% mm*
We know that % = %
250 W 60 3
W 9D, _ 60 x 147.34 x 10 — 2020 N Ans.
147.34x10° 175 17.5x 250

2. Number of degreeswhich the wheel will turn when load W = 2020 N is applied
0 = Required number of degrees.
We know that % = g
o = T _  250x2020x1200 _ 0.05° Ans.
C.J 80x10°x147.34x10°
Example 5.3. A shaft istransmitting 97.5 kW at 180 r.p.m. If the allowable shear stressin the
material is 60 MPa, find the suitable diameter for the shaft. The shaft is not to twist morethat 1° in

Let

a length of 3 metres. Take C = 80 GPa.
Solution. Given : P =97.5 kW = 97.5 x 103 W ; N = 180 r.p.m. ; T = 60 MPa = 60 N/mm?

0=1°=n/180=0.0174rad ;| =3 m=3000 mm ; C =80 GPa= 80 x 10° N/m?2 = 80 x 103 N/mm?
T = Torque transmitted by the shaft in N-m, and

Let
d = Diameter of the shaft in mm.

We know that the power transmitted by the shaft (P),

27 N.T 2rnx180xT
3 = = =
97.5x 10 60 &0 18.852T
T = 97.5 x 10%18.852 = 5172 N-m = 5172 x 10° N-mm

Now let usfind the diameter of the shaft based on the strength and stiffness.
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1. Considering strength of the shaft
We know that the torque transmitted (T),

5172 % 10° = — xTx = — x 60 x d® = 11.78 o
16 16 '
d3® = 5172 x 10%/11.78 =439 x 10° or d=76mm ()

2. Considering stiffness of the shaft
Polar moment of inertia of the shaft,

T
- — 4 — 4
=3 x d*=0.0982d
T C.8
We know that 3 = T
3 3 6
5172 x 10 _ 80 x10°x 0.0174 or 52.7>:10 — 0464
0.0982 d* 3000 d
d* = 527 x10%0.464 = 113.6 x 10° or d =103 mm ..(ii)

Taking larger of the two values, we shall provide d = 103 say 105 mm Ans.

Example5.4. A hollow shaft isrequired to transmit 600 kW at 110 r.p.m., the maximum torque
being 20% greater than the mean. The shear stressis not to exceed 63 MPa and twist in a length of
3 metres not to exceed 1.4 degrees. Find the external diameter of the shaft, if theinternal diameter to
the external diameter is 3/8. Take modulus of rigidity as 84 GPa.

Solution. Given : P = 600 kW = 600 x 103W; N=110rp.m.; T, =12T . ;1=63MPa
=63 N/mm?; | =3m=3000mm; 6=14xn/180=0.024rad; k=d/d, =3/8;C=284GPa
=84 x 10° N/m? = 84 x 10° N/mm?

Let T ean = Mean torque transmitted by the shaft,
External diameter of the shaft, and
Internal diameter of the shaft.

o o
non

Conveyor belt
carries soil away

Control cab houses
operator

Powerful hydraulic rams

Cutting head push cutting head forward

roller

Cutting teeth made Archimedean screw lifts soil onto
fo tungsten carbide conveyer belt

A tunnel-boring machine can cut through rock at up fo one kilometre a month. Powerful hydraulic
rams force the machine’s cutting head fowards as the rock is cut away.

Note : This picture is given as additional information and is not a direct example of the current chapter.
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We know that power transmitted by the shaft (P),
20 N.Tren 27X 110X T ean
= =1152T
60 60 mean
. Tpean = 600 x 10%/11.52 = 52 x 10 N-m = 52 x 10° N-mm
and maximum torque transmitted by the shaft,
Toex = 12T, = 1.2 x 52 x 106 = 62.4 x 10° N-mm
Now let usfind the diameter of the shaft considering strength and stiffness.
1. Considering strength of the shaft
We know that maximum torque transmitted by the shaft,

600 x 10° =

T = 1_’:3 x 7 (d,)3 (1— K4
T 3 3 4 3
62.4% 10° = 3 - X 63x (dy)* |1~ | | | =1212(d)
(d)® =624 x10%12.12=5.15 x 10° or d,=172.7 mm

2. Considering stiffness of the shaft
We know that polar moment of inertia of ahollow circular section,

4
_ T 4 4 T 4 di
J=—|(d)" -(d) |=—(d 1-| 1+
X [0 - @)*] 32<0){ (dH
4
L 4 4 T 4 3 4
=—(d 1-k)=—(d 1-|-— = 0.0962 (d
2 (@) -k 32<0){ [8” (do)
We also know that
T_Co
J |
6 3 6
62.4x10 :84><10 x 0.024 or 648.6><410 — 0672
0.0962 (d,)* 3000 (do)

. (d)* = 648.6 x 106/0.672 = 964 x 10° or d =176.2mm
Taking larger of the two values, we shall provide
d, = 176.2 say 180 mm Ans.

5.3 Shafts in Series and Parallel

()

(i)

When two shafts of different diameters are connected together to form one shaft, it is then
known as composite shaft. If the driving torque is applied at one end and the resisting torque at the
other end, then the shafts are said to be connected in series as shown in Fig. 5.2 (). In such cases,
each shaft transmits the same torque and the total angle of twist is equal to the sum of the angle of

twists of the two shafts.
Mathematically, total angle of twist,
Gl GJ,
If the shafts are made of the same material, thenC, = C, = C.

oo Th Tl _T[h 1
cy cCl, clJ I,

0=0,+6,
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Z /T
® > 9 @ < @ (-

Tle— |} ———te—— 1, ——> T,
lj ——

[, ——>
(a) Shafts in series. (b) Shafts in parallel.

Fig. 5.2. Shaftsin series and parallel.
When thedriving torque (T) isapplied at thejunction of the two shafts, and the resi sting torques
T, and T, at the other ends of the shafts, then the shafts are said to be connected in parallel, as shown
in Fig. 5.2 (b). In such cases, the angle of twist is same for both the shafts, i.e.

0, =6,
o Tl =T2I2 E=|_2x&xﬁ
Cl‘Jl C2 ‘J2 T2 Il CZ ‘JZ
and T=T,+T,
If the shafts are made of the same material, then C, = C,.
T_b,
T2 Il ‘JZ

Example 5.5. A steel shaft ABCD having a total length of 3.5 m consists of three lengths
having different sections as follows:

AB is hollow having outside and inside diameters of 100 mmand 62.5 mmrespectively, and BC
and CD are solid. BC has a diameter of 100 mm and CD has a diameter of 87.5 mm. If the angle of
twist isthe same for each section, determine the length of each section. Find the val ue of the applied
torque and thetotal angle of twist, if the maximum shear stressin the hollow portionis47.5 MPa and
shear modulus, C = 82.5 GPa.

Solution. Given: L =3.5m; d, =100 mm; d = 625 mm; d, = 100 mm; d, = 87.5 mm;
T =47.5MPa=47.5N/mm?; C =825 GPa= 82.5 x 10° N/mm?

The shaft ABCD isshown in Fig. 5.3.

A B C D
T — T i
103mm'J____________'10$mm__—————87.:mm———

~— < —SE R

< 35m -

Fig. 5.3

Length of each section
Let [, I, and |, = Length of sections AB, BC and CD respectively.
We know that polar moment of inertia of the hollow shaft AB,
T T
J = 2 [(d)*—(d)T = 2 [(100)* - (62.5)4] = 8.32 x 106 mm*
Polar moment of inertia of the solid shaft BC,

= gy & 4_ 6 mm?
J, = 35 (@)*= 55 (100)*= 982 x 10°mm
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and polar moment of inertia of the solid shaft CD,

T
J, = 3_"2 (dy)* = =5 (87.5)*=5.75 x 10° mm*

32
We also know that angle of twist,
6=T.1/C.J

Assuming the torque T and shear modulus C to
be samefor all the sections, we have

Angle of twist for hollow shaft AB,

6, =T.1,/C.J,
Similarly, angle of twist for solid shaft BC,
0, =T.1,/C.J,
and angle of twist for solid shaft CD,
6, =T.1,/C.J, ' _—-_
Sincetheangle of twist issamefor each section, Machine part of a jet engine. _
therefore Notg : This plgture is given as additional information
and is not a direct example of the current chapter.
0, =6,
T.I T.l L 3 832x10°
—L = 2 o == =0847 ()
c.J, C.J, l, J, 9.82x10
Also 0, = 6,
6
T Ty |_1:i:8.32><10621_447 i)
C. Jl C. J3 |3 J3 575%x10
Weknow that |, + 1, +1,=L=3.5m=3500 mm
l, |1+ L + ks = 3500
bl
I1(1+ 1 + 1 j=3500
0.847 1.447
|, x2.8717 = 3500 or |, =3500/2.8717 = 1218.8 mm Ans,

From equation (i),

|, =1,/0.847 =1218.8/ 0.847 = 1439 mm Ans.
and from equation (ii), |, =1,/1.447=1218.8/ 1.447 = 842.2 mm Ans.
Value of the applied torque
We know that the maximum shear stressin the hollow portion,
T = 47.5 MPa = 47.5 N/mm?
For a hollow shaft, the applied torque,

LI [(do)“ - <di)4} _ T s [(100)“ - <62.5)4}
16 d, 16 100

7.9 x 106 N-mm = 7900 N-m Ans.

T

Total angle of twist
When the shafts are connected in series, the total angle of twist is equal to the sum of angle of
twists of theindividual shafts. Mathematically, the total angle of twist,
0 =6,+6,+0,
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T.I . .
Sk T Tl Tk s
c.J, C.J, C.J ClJ)y 3 I

7.9><106{ 1218.8 . 1439 . 842.2 }

825x10° | 832x10° 9.82x10° 5.75x10°
7.9x10°
= = [1465 + 1465 + 146.5] = 0.042 rad
82.5x 10°x 10

= 0.042 x 180/ T = 2.406° Ans.

5.4 Bending Stress in Straight Beams
In engineering practice, the machine parts of structural members may be subjected to static or
dynamic loads which cause bending stress in the sections besides other types of stresses such as
tensile, compressive and shearing stresses.
Consider astraight beam subjected to abending moment M as shown in Fig. 5.4. Thefollowing
assumptions are usually made while deriving the bending formula.
1. Themateria of the beam is perfectly homogeneous (i.e. of the same material throughout)
and isotropic (i.e. of equal elastic propertiesin all directions).
2. Thematerial of the beam obeys Hooke's law.
3. The transverse sections (i.e. BC or GH) which were plane before bending, remain plane
after bending also.
4.  Each layer of the beam is free to expand or contract, independently, of the layer, above or
below it.

5. TheYoung's modulus (E) isthe samein tension and compression.
6. Theloadsare applied in the plane of bending.

Fig. 5.4. Bending stressin straight beams.

A little consideration will show that when abeam is subjected to the bending moment, the fibres
on the upper side of the beam will be shortened due to compression and those on the lower side will
be elongated due to tension. It may be seen that somewhere between the top and bottom fibres there
isasurface at which the fibres are neither shortened nor lengthened. Such asurfaceiscalled neutral
surface. The intersection of the neutral surface with any normal cross-section of the beam is known
asneutral axis. The stress distribution of abeamisshowninFig. 5.4. The bending equationisgiven

by

M _S_E
TV R
where M = Bending moment acting at the given section,
6 = Bending stress,
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I = Moment of inertia of the cross-section about the neutral axis,
y = Distance from the neutral axisto the extreme fibre,
E = Young's modulus of the material of the beam, and
R = Radius of curvature of the beam.
From the above equation, the bending stressis given by

cs—y><E
- R

Since E and R are constant, therefore within elastic limit, the stress at any point is directly
proportional toy, i.e. the distance of the point from the neutral axis.

Also from the above equation, the bending stress,

My M_ M
o= 'y z

Theratio I/y isknown as section modulus and is denoted by Z.

Notes: 1. The neutral axis of a
section always passes through its
centroid.

2. In case of symmetrical
sections such as circular, sguare or
rectangular, the neutral axis passes
through its geometrical centre and
the distance of extreme fibre from
the neutral axisisy=d/ 2, whered
is the diameter in case of circular
section or depth in case of square or
rectangular section.

3. Incase of unsymmetrical
sections such as L-section or T-
section, the neutral axis does not
pass through its geometrical centre.
In such cases, first of al the centroid
of the section is calculated and then
the distance of the extremefibresfor Parts in a machine.
both lower and upper side of the
section is obtained. Out of these two values, the bigger value is used in bending equation.

Table 5.1 (from pages 130 to 134) shows the properties of some common cross-sections.

Hammer strikes cartridge to make it

explode .
Revolving

chamber holds ~
bullets

—

Barrel X
Blade foresight

Vulcanized
rubber handle”

This is the first revolver produced in a production line using intferchangeable parts.
Note : This picture is given as additional information and is not a direct example of the current chapter.
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Example5.6. A pump lever rocking shaft is shown in Fig. 5.5. The pump lever exerts forces of
25 kN and 35 kN concentrated at 150 mm and 200 mm from the left and right hand bearing respec-
tively. Find the diameter of the central portion of the shaft, if the stressis not to exceed 100 MPa.

25 kN
J:i 600 mm
C D
B

Fig. 5.5
Solution. Given : 6, = 100 MPa= 100 N/mm?
Let R, and R; = Reactionsat A and B respectively.
Taking moments about A, we have
R % 950 = 35 x 750 + 25 x 150 = 30 000
R, = 30000/ 950 = 31.58 kN = 31.58 x 10° N

and R, = (25+ 35) —31.58 = 28.42 kN = 28.42 x 10° N

-. Bending moment at C
= R, x 150 = 28.42 x 10% x 150 = 4.263 x 10° N-mm

and bendingmomentat D = Ry x 200 = 31.58 x 10% x 200 = 6.316 x 10° N-mm

We see that the maximum bending moment
isat D, therefore maximum bending moment, M
= 6.316 x 10° N-mm.

Let d = Diameter of the

Contents

shaft.
.. Section modulus,
T
Z=—xd3
32
=0.0982d3
We know that bending stress ,
9 (Gb) The picture shows a method where sensors are
M used to measure torsion
100 = - Note : This picture is given as additional information
and is not a direct example of the current chapter.

_ 6316x10°  64.32x10°

0.0982d® = d®
d3 = 64.32 x 108/100 = 643.2 x 10% or d = 86.3 say 90 mm Ans.

Example5 7. Anaxle 1 metrelong supported in bearingsat itsends carriesa fly wheel weighing
30 kN at the centre. If the stress (bending) is not to exceed 60 MPa, find the diameter of the axle.
Solution. Given: L =1 m= 1000 mm; W=30kN =30 x 10*N ; o, = 60 MPa= 60 N/mm?

The axlewith aflywheel isshownin Fig. 5.6.
Let d = Diameter of the axlein mm.

Top
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.. Section modulus, Flywheel

- 3 3 _Z Axle
Z 32 x d?=0.0982d J
Maximum bending moment at the centre of the axle,
3
M :W.L=30><10 X1000:7.5><106N-mm L

4 4 lm ———
We know that bending stress (c,),

60 M _ 75x10° _ 76.4x10°
~Z 0.0982d3 d3
d® =76.4x10860=1.27 x 10 or d=108.3 say 110 mm Ans.

Example 5.8. A beam of uniform rectangular cross-section is fixed at one end and carries an
electric motor weighing 400 N at a distance of 300 mm 400 N
from the fixed end. The maximum bending stressinthe 7 J«—300 mm 4,&
beamis 40 MPa. Find the width and depth of the beam,

if depth is twice that of width. —hf %
Solution. Given: W =400 N ; L = 300 mm; ¥ %
=40 MPa=40 N/mm?; h=2b
The beam isshown in Fig. 5.7. Fig. 5.7
Let b = Width of the beam in mm, and
h = Depth of the beam in mm.
.. Section modulus,

b

b.h* b(2b)? 2b% 4
Z= = = mm
6 6 3
Maximum bending moment (at the fixed end),
M = WL =400 x 300 = 120 x 10°* N-mm

We know that bending stress (c,),
M 120x10°x3 180 x10°

z 200 b
b3 = 180 x 10340 = 4.5 x 10% or b=16.5mm Ans.
and h=2b=2x16.5=33mmAns.

Example5.9. A castiron pulley transmits 10 kW at 400 r.p.m. The diameter of the pulleyis 1.2
metre and it has four straight arms of elliptical cross-section, in which the major axisis twice the
minor axis. Determine the dimensions of the arm if the allowable bending stressis 15 MPa.

Solution. Given: P=10kW =10 x 103 W ; N=400r.p.m; D = 1.2 m = 1200 mm or
R =600 mm; ¢, = 15 MPa= 15 N/mm?

Let T = Torque transmitted by the pulley.

We know that the power transmitted by the pulley (P),

10 % 10° = 2nN.T =21t><400><T —oT
60 60

10 x 10%/42 = 238 N-m = 238 x 10° N-mm

T
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Since the torque transmitted is the product of the tangential load and the radius of the pulley,
therefore tangential load acting on the pulley

3
- T _Z8X10_ a967 N
R 600

Since the pulley has four arms, therefore tangential 1oad on each arm,
W = 396.7/4=99.2 N
and maximum bending moment on the arm,
M = Wx R=99.2 x 600 = 59 520 N-mm
Let 2b = Minor axisin mm, and
2a = Mgoraxisinmm=2x 2b=4b ...(Given)
.. Section modulus for an élliptical cross-section,

zZ = % xazbzg (2b)2 x b = 1 b® mm?

We know that bending stress (c,),
M 59520 18943

=70 5
or b3 =18943/15=1263 or b=10.8mm
Minor axis, 2b =2x10.8=21.6 mmAns.
and major axis, 2a =2x2b=4x10.8=43.2mmAns.

5.5 Bending Stress in Curved Beams

We have seen in the previous article that for the straight beams, the neutral axis of the section
coincideswithits centroidal axisand the stressdistribution in the beamislinear. But in case of curved
beams, the neutral axis of the cross-section is shifted towards the centre of curvature of the beam
causing anon-linear (hyperbolic) distribution of stress, asshownin Fig. 5.8. It may be noted that the
neutral axisliesbetween the centroidal axisand the centre of curvature and always occurswithin the
curved beams. The application of curved beam principle is used in crane hooks, chain links and
frames of punches, presses, planers etc.

Stress
distribution Cross-section
R at X-X
! R
Ri Rn : !
|
|
(Centre of curvature) _v__v__Jl______L__

(0]

Fig. 5.8. Bending stress in a curved beam.

Consider acurved beam subjected to a bending moment M, as shownin Fig. 5.8. In finding the
bending stress in curved beams, the same assumptions are used as for straight beams. The general
expression for the bending stress (c,) in a curved beam at any fibre at a distance y from the neutral
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axis, isgiven by

My
%~ AelR -y
where M = Bending moment acting at the given section about the centroidal
axis,

A = Areaof cross-section,
e = Distance from the centroidal axisto the neutral axis=R-R,
R = Radius of curvature of the centroidal axis,
R, = Radiusof curvature of the neutral axis, and
y = Distancefrom the neutral axisto thefibreunder consideration. Itis
positive for the distances towards the centre of curvature and
negative for the distances away from the centre of curvature.
Notes: 1. The bending stress in the curved beam is zero at a point other than at the centroidal axis.
2. If thesectionissymmetrical such asacircle, rectangle, 1-beam with equal flanges, then the maximum
bending stress will always occur at the inside fibre.
3. If the section isunsymmetrical, then the maximum bending stress may occur at either theinside fibre
or the outside fibre. The maximum bending stress at the inside fibre is given by

_ M.y
% ~ Ale.R
where y, = Distance from the neutral axisto theinside fiore=R —R , and

R = Radiusof curvature of the inside fibre.
The maximum bending stress at the outside fibre is given by

M.y,
% =~ A.e.R
where y, = Distance from the neutral axisto the outside fibore=R - R, and

R, = Radius of curvature of the outside fibre.

It may be noted that the bending stress at the inside fibre istensile while the bending stress at the outside
fibre is compressive.

4. If thesection hasan axial load in addition to bending, then the axial or direct stress (c,,) must be added
algebraically to the bending stress, in order to obtain the resultant stress on the section. In other words,

Resultant stress, 6 =040,

Thefollowing table showsthe values of R and Rfor various commonly used cross-sectionsin
curved beams.

Table 5.2. Values of R, and R for various commonly used
cross-section in curved beams.

Section Values of R and R

h

|<_hT|_|N_>| Rn:loge[Ro]

R

R=R +—

|
. h
! 2

e ]
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Section Values of R, and R

Rﬁ[f:ﬁ]

|
|
|
!
= R=R +93
R

(252

| fe
/—>||/+T | A (AL R Jioge (o) -
|

| h(g + 20)
—— R.—> —R 4+ \1 " “0/
Wz 5| *R*3hen)
Ale— R———»
<—Ro
— }
e | | gt
D]
; |
[ H_LR—>| R—F?,+g
|A R,—»
Al gl
Py —

(b-t) +t;) +t.h

| .

[] e || el
| |
|

|
|
1 1. 1
| R, Zh2t+ = t2(b—t) + (b —t) to (h——t,)
| R=R+2 2 2
. ht+(b —t)(t +t,)
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Section Values of R and R
——— h —>
CN_Hi<:T_ I R, = ti(lg—t)+th
| B-1 |°9e[R+t‘J+t.Ioge[R°j
1 | | :
Il
T | | _|<—R—>i %h2t+%ti2(h—t)
A S T
e|<— >
}‘*R —
<—R0 4>|
= h iy |
e _HtiL_ | R,= t (B —t) +ty (b, —t)+th
_ C N | R+t Rt =
bT - _f | e TR s R e R
L |
|| | 1 N 1
aa |<_R—’I R:R+Eh2t+§ti (h_t)+(b°_t)to(h—§to)
}-— Lq t(g—t) +t, (b —t) + th
R
< R, =:

Example 5.10. The frame of a punch pressis shown in Fig. 5.9. Find the stresses at the inner
and outer surface at section X-X of the frame, if W= 5000 N.

Solution. Given : W =5000 N ; b; =18 mm; b, =6 mm; h =40 mm; R =25 mm;
R, =25+ 40=65mm
We know that area of section at X-X,

1
A= = (18 + 6) 40 = 480 mm?
2
The various distances are shown in Fig. 5.10. / fW
We know that radius of curvature of the neutral X

/
axis, % 10 VV
o) N
2 |

A (Wj log, (Roj ~ (b - b)) 10—
R vt
(500
i (]'8><65_6><25) I (65) - (18-16) Secti 40t X—j(_
40 “\25 cenond /;11 dimensions in mm.
480 —13883mm Fig. 5.9

~ (255x 0.9555) — 12
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and radius of curvature of the centroidal axis,
R=R+ h (b + 2b,) _ o5, 40 (18 + 2x 6) mm
3@ +hby) 3(18+ 6)
=25+ 16.67 = 41.67 mm
Distance between the centroidal axisand neutral axis,
e =R-R =41.67-38.83=284mm
and the distance between the load and centroidal axis,
X =100 + R=100 + 41.67 = 141.67 mm
.. Bending moment about the centroidal axis,
M = W.x=5000 x 141.67 = 708 350 N-mm

The section at X-X is subjected to adirect tensile load of W= 5000 N and a bending moment of
M = 708 350 N-mm. We know that direct tensile stress at section X-X,

o = W 300 _ 1645 Njmm? =10.42 MPa
A 0
w
[e—— 40 —> :
< | x >
CN |
/ i: 100 N
| | Vi I w
< Vo —pre—> |
—
|1 fe— R—>
~—— &, —!
le——R ——>
- R, :I
All dimensions in mm.
Fig. 5.10
Distance from the neutral axisto theinner surface,
Y, =R, —R =38.83-25=13.83 mm
Distance from the neutral axisto the outer surface,
Y, = R,—R,=65-38.83=26.17mm
We know that maximum bending stress at the inner surface,
M.y .
o, = Yi _ 708350x13.83 _ 287 4 N/mm?
' A.e.R 480x284x25
= 287.4 MPa (tensile)
and maximum bending stress at the outer surface,
_ M.y, _708350x26.17 _ 209.2 N/mm?

%0~ Ae.R  480x 2.84x 65

= 209.2 MPa (compressive)
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.. Resultant stress on the inner surface
=0, + o = 10.42 + 287.4 = 297.82 MPa (tensile) Ans.

and resultant stress on the outer surface,
=0,—-0,,=10.42-209.2 =-198.78 MPa
= 198.78 M Pa (compressive) Ans.

A big crane hook

Example 5.11. The crane hook carries a load of 20 kN as shown in Fig. 5.11. The section at
X-Xisrectangular whose horizontal sideis 100 mm. Find the stressesin theinner and outer fibres at

the given section.
Solution. Given: W=20kN=20x 103N ; R=50mm ;R =150mm;h=100mm;b=20mm
We know that area of section at X-X,
A = b.h =20 x 100 = 2000 mm?
The various distances are shown in Fig. 5.12.
We know that radius of curvature of the neutral axis,
h 100 100

R, = o [ = og (150) " 1098
e R e 50
and radius of curvature of the centroidal axis,

R=R +g=50+%=100mm

=91.07 mm

-. Distance between the centroidal axis and neutral axis,
e =R-R =100-91.07=8.93 mm
and distance between the load and the centroidal axis,
X = R=100 mm
*. Bending moment about the centroidal axis,
M =Wxx=20x10%x100=2 x 106 N-mm
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The section at X-X issubjected to adirect tensileload of W= 20 x 10° N and abending moment
of M =2 x 108 N-mm. We know that direct tensile stress at section X-X,

W 20x10°
c,=—=

= 2:
\ A 2000 10 N/mm¢ = 10 MPa

_+_ 100_’ All dimen}:ioons in mm.
20 V77

Section at X-X
All dimensions in mm.

Fig. 5.11 Fig. 5.12
We know that the distance from the neutral axisto theinside fibre,
y, = R,—R =9107-50=41.07 mm
and distance from the neutral axisto outside fibre,

Y, = R,—R,=150-91.07 = 58.93 mm

. Maximum bending stress at theinside fibre,
M.y 2x10°x41.07
oy =

i ~ A.e.R  2000x893x50
and maximum bending stress at the outside fibre,

M.y,  2x10°x5893
A.e.R, 2000x8.93x150
= 44 MPa (compressive)

=92 N/mm? = 92 MPa (tensile)

Cpp = = 44 N/mm?

.. Resultant stress at the inside fibre
=0, +06,; =10+ 92 =102 MPa (tensile) Ans.
and resultant stress at the outside fibre

= 6,— 0, = 10— 44 = — 34 MPa = 34 MPa (compressive) Ans.

Example 5.12. A C-clamp is subjected to a maximum load of W, as shown in Fig. 5.13. If the
maximumtensile stressin the clamp is limited to 140 MPa, find the value of load W.
Solution. Given : O(max) = 140 MPa = 140 N/mm?; R=25mm;R =25+25=50mm;
b =19mm;t=3mm;t=3mm;h=25mm
We know that area of section at X-X,
A =3x22+3%x19=123mm?
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Thevarious distances are shown in Fig. 5.14. We know that radius

of curvature of the neutral axis, X X W
(b — .h
- JCRDES } p”«so
(b —1)log, [ B ] 1 t10g.[ P 0
h Oe R Je E 25

_ 3(19-3)+3x25 \
(19 - 3) log, (252; 3) + 3109, (ggj N |
3 119
=31.64 mm T 22 [Z
<
and radius of curvature of the centroidal axis, Section of X-X
% Wt 4 % tiz (b —1t) All dlmz?;msni :;n mm.
h.t+t({-t)
Ix25°x3+1xF(19-3) 9375+ 72
25%x 3+ 3(19 - 3) T 5 a8
=25+82=33.2mm
Distance between the centroidal axisand neutral axis,
e =R-R =332-3164=156 mm
and distance between the load W and the centroidal axis,
X =50+R=50+33.2=83.2mm
Bending moment about the centroidal axis,
M =Wx=W=x83.2=83.2 WN-mm

le—25 —>

20— »y3le—25 o 50 .

CN 7
e i

B 123 123
T16x0.113+3x 0.693  3.887

R=R+

=25+

All dimensions in mm.

Fig. 5.14

The section at X-X is subjected to adirect tensile load of W and a bending moment of 83.2 W.
The maximum tensile stresswill occur at point P (i.e. at the inner fibre of the section).

Distance from the neutral axisto the point P,
y; = R,—R =31.64-25=6.64 mm
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Direct tensile stress at section X-X,
o, = W_W _ 0008w Nmm?
A 123
and maximum bending stress at point P,
_ M.y  832Wx664

O.. =
® A.e.R 123x156x25
We know that the maximum tensile stress O max?

140 = ¢, + 0, =0.008 W+ 0.115W=0.123 W
W = 140/0.123 = 1138 N Ans.
Note : We know that distance from the neutral axis to the outer fibre,
Y, = R,—R,=50-31.64 = 18.36 mm

. Maximum bending stress at the outer fibre,

=0.115W N/mm?

"~ A.e.R 123x156x50

M.y, 832Wx18.36

=016W

and maximum stress at the outer fibre,

= 6,~G,, = 0.008 W—0.16 W= — 0.152 W N/mm?

= 0.152 W N/mm? (compressive)

From above we see that stress at the outer fibreislarger in this case than at theinner fibre, but this stress

at outer fibreis compressive.

5.6 Principal Stresses and Principal Planes

In the previous chapter, we have discussed about the direct tensile and compressive stress as
well assimple shear. Also we have alwaysreferred the stressin aplanewhich is at right anglesto the

line of action of the force.
But it has been observed
that at any point in a
strained material, thereare
three planes, mutually
perpendicular to each
other which carry direct
stresses only and no shear
stress. It may be noted that
out of these three direct
stresses, one will be
maximum and the other
will be minimum. These
perpendicular planes
which have no shear stress
are known as principal
planes and the direct
stresses along these planes
are known as principal
stresses. The planes on
which the maximum shear

Field structure
(magnet)

Armature con-
taining several
coils

The ends of the coils

are arranged round
the shaft

Big electric generators undergo high forsional stresses.

stress act are known as planes of maximum shear.
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5.7 Determination of Principal Stresses for a Member Subjected to Bi-axial
Stress

When amember is subjected to bi-axial stress (i.e. direct stressin two mutually perpendicular
planes accompanied by a simple shear stress), then the normal and shear stresses are obtained as
discussed below:

Consider arectangular body ABCD of uniform cross-sectional areaand unit thickness subjected
to normal stresses ¢, and ¢, as shown in Fig. 5.15 (a). In addition to these normal stresses, a shear
stress T also acts.

It has been shown in books on * Strength of Materials that the normal stress across any oblique
section such as EF inclined at an angle 6 with the direction of 6,,, asshown in Fig. 5.15 (), isgiven by

o, = %1 7;02 o ;GZ c0s 20 + T sin 20 ()

and tangential stress (i.e. shear stress) across the section EF,
1
w5 (6,—0,) SN 20 -1 cos26 (i)

Since the planes of maximum and minimum normal stress (i.e. principa planes) have no
shear stress, therefore theinclination of principal planesis obtained by equating T, = 0in the above
equation (ii), i.e.

% (6,—0,)SN20-1cos260=0

21
tan 20 = (i)
61— 63
G2
AAAAA
D T F C D T<e—F—— F C
T T T
P | 1 S > P\ T Sy .
Gl§ R — ;Gl Gl% T T T §61
= c, K6 T = = o, K0 =
2 My ol By
B M E T
A >t B A _ 1 o1 B
YYYYY
02
(@) Direct stress in two mutually (b) Direct stress in one plane accompanied
prependicular planes accompanied by by asimple shear stress.

asimple shear stress.

Fig. 5.15. Principal stresses for amember subjected to bi-axial stress.

We know that there are two principal planes at right angles to each other. Let 6, and 6, be the
inclinations of these planes with the normal cross-section.

From Fig. 5.16, we find that

2
sn2o =
\/((51— 0,)%+ 41
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F
. 27
sin26, = +
(06,—0,)%+ 417
. 27
and sin20, = —
\/(csl— 0,)%+ 41
Also cos20 = + 91~ %
(6,—0,)%+ 417
c0s20, = + 01_(:2 -
(op—0,) +4r1 Fig. 5.16
6,— O
and cos 20, = 1 2

Yoy~ 0,)2+ 47
The maximum and minimum principal stresses may now be obtained by substituting the values
of sin 26 and cos 26 in equation (i).
. Maximum principal (or normal) stress,
oy = LZGZ + % (6,— G,)%+ 412 (V)
and minimum principal (or normal) stress,

0;+0 1
Oy = ¥—5\1(61—62)2+41:2 (V)

2
The planes of maximum shear stress are at right angles to each other and areinclined at 45° to
the principal planes. The maximum shear stressisgiven by one-half thealgebraic difference between
theprincipal stresses, i.e.

_Su-0%p_1

(6,—0,)° + 4 1° (Vi)

A Boring mill.
Note : This picture is given as additional information and is not a direct example of the current chapter.
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Notes: 1. When amember is subjected to direct stressin one plane accompanied by asimple shear stress as shown
in Fig. 5.15 (b), then the principal stresses are obtained by substituting 6, = 0 in equation (iv), (v) and (vi).

o, = %+%[\/(01)2+ 41:2}
oy = %—%[\/(cl)ﬁ 412}
and Toox = %[\/(01)%412}

1T r—2 2 o
2. Intheabove expression of o, thevalueof - [ (0)*+41° J ismorethan 31 . Therefore the nature

of o, will be oppositeto that of 6,,, i.e. if 6,, istensile then 6, will be compressive and vice-versa.

5.8 Application of Principal Stresses in Desighing Machine Members

Therearemany casesin practice, in which machine members are subjected to combined stresses
due to simultaneous action of either tensile or compressive stresses combined with shear stresses. In
many shafts such as propeller shafts, C-frames etc., there are direct tensile or compressive stresses
due to the external force and shear stress due to torsion, which acts normal to direct tensile or com-
pressive stresses. The shaftslike crank shafts, are subjected simultaneously to torsion and bending. In
such cases, the maximum principal stresses, dueto the combination of tensile or compressive stresses
with shear stresses may be obtained.

The results obtained in the previous article may be written asfollows:

1. Maximum tensile stress,

Otmag = %*%[V(Gt)2+ a7

2. Maximum compressive stress,

Cotra) = G—2C+%[1/(cc)2+ 412]

3. Maximum shear stress,

e = 5 (007 47

where o, = Tensile stress due to direct load and bending,
o, = Compressive stress, and
T = Shear stress due to torsion.
Notes: 1. When 1 = 0 asin the case of thin cylindrical shell subjected in internal fluid pressure, then

Ot max) — Ot
2. When the shaft is subjected to an axial load (P) in addition to bending and twisting moments asin the
propeller shafts of ship and shaftsfor driving worm gears, then the stress due to axial load must be added to the
bending stress(c,). Thiswill givethe resultant tensile stress or compressive stress (c, or 6,) depending upon the

type of axia load (i.e. pull or push).

Example5.13. A hollow shaft of 40 mm outer diameter and 25 mminner diameter is subjected
to a twisting moment of 120 N-m, simultaneously, it is subjected to an axial thrust of 10 kN and a
bending moment of 80 N-m. Cal culate the maximum compressive and shear stresses.

Solution. Given: d; =40 mm; d =25 mm; T = 120 N-m = 120 x 103 N-mm; P = 10 kN
=10x 10°N ; M = 80 N-m = 80 x 10° N-mm

We know that cross-sectional area of the shaft,

T

A= %[(do)z_ (d)?]= A [ (40)% - (25)% ] = 766 mm?
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.. Direct compressive stress due to axial thrust,
_ P _10x10°

%= AT 766
Section modulus of the shaft,

. _{M} _{M} _ 5325 mm’

=13.05 N/mm? = 13.05 MPa

T3 d, 32 40
Bending stress due to bending moment,
3
o, = M _80x10° _ 15.02 N/mm? = 15.02 MPa (compressive)

P77z 5325
and resultant compressive stress,

o, = 0, + 6, = 15.02 + 13.05 = 28.07 N/mm? = 28.07 MPa
We know that twisting moment (T),

L ECH I CHN :1X{M}:10650T

16 d, 16 40
120 x 10%10 650 = 11.27 N/mm? = 11.27 MPa

120 x 10°

. T
M aximum compressive stress
We know that maximum compressive stress,

(¢ 1 2 2
Oomg = ?C-FEI:\/(GC) +4r1 }

28.07

+ % [ J@son?+ 4 @127/ ]
14,035 + 18 = 32.035 MPa Ans.

Maximum shear stress
We know that maximum shear stress,

T = 2[00 +47 | = 1] (28.07)2 + 411277 | = 18 MPa Ans.

Example5.14. Ashaft, asshowninFig. 5.17, is subjected to a bending load of 3 kN, puretorque

of 1000 N-mand an axial pulling force of 15 kN. 3KN
Calculate the stresses at A and B. 7
Solution. Given : W = 3 kN = 3000 N : A ¥ .
T =1000 N-m = 1 x 108 N-mm; P = 15 kN ~Z-—— 50 mm Dia - — — — — — - |
=15x%x 10N ; d = 50 mm; x = 250 mm 1000 e
i B
We know that cross-sectional area of the shaft, 950 mm
i :
A==xd? Fig. 5.17
4
T
=2 (50)2 = 1964 mm?
.. Tensile stressdue to axial pulling at points A and B,
P 15x10°
6, = —=—2"" =764N/mm?=7.64MPa
A 1964

Bending moment at points A and B,
M = Wx =3000 x 250 = 750 x 10% N-mm

Contents
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Section modulus for the shaft,
-
3R
=12.27 x 103 mm3

3= T 3
z xd*= = (50

. Bending stress at points A and B,
M 750x10°

6. =— =72
b7 1227x10°
=61.1 N/mm?=61.1 MPa
Thisbending stressistensileat pointAand |
compressive at point B.
.. Resultant tensile stress at point A,
G, =0,+0,=611+7.64

This picture shows a machine component inside a

crane
=68.74 MPa Note : This picture is given as additional information and
and resultant Compl‘eSSive stress at poi ntB is not a direct example of the current chapter.

Gy = 6,—0,=61.1-7.64 =53.46 MPa
We know that the shear stress at points A and B due to the torque transmitted,
_ 16T  16x1x10°

T=—3 3
nd 7 (50)
Stresses at point A
We know that maximum principal (or normal) stress at point A,

o 1
Cpmag = 7’* +3 [,/(GA)2+ 4‘C2]

% ¥ % [ J(e8.74)2+ 4 (4074 |

= 34.37 + 53.3 = 87.67 MPa (tensile) Ans.
Minimum principal (or normal) stress at point A,

c 1
i) = 7’* -3 [\/(GA)Z +4 172] =34.37-53.3=-18.93 MPa

= 18.93 MPa (compressive) Ans.
and maximum shear stress at point A,

Tamag = 3 [\/(GA)2+ 4 rz] =1 [\/(68.74)2 +4 (40.74)2]

53.3MPaAns.

= 40.74 N/mm? = 40.74 MPa ( T=116><1:><d3)

Stresses at point B
We know that maximum principal (or normal) stress at point B,

_og 1 2 2
Oy = 7+§[ (og)°+4r1 ]
5346 1
—_— + —
2
26.73 + 48.73 = 75.46 MPa (compressive) Ans.

[ J(53.46)2+ 4 (40.74)? |
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Minimum principal (or normal) stress at point B,

Og(min) ~ 678 - % [\/ (0g)° + 4172]

26.73 -48.73 = - 22 MPa
= 22 MPa((tensile) Ans.
and maximum shear stress at point B,

Toomg = 3 [(0a)?+ 477 | = 1| (5346 + 4 (40.747? |
48.73 MPaAns.

Example 5.15. An overhang crank with pin and shaft is shown in Fig. 5.18. A tangential load
of 15 kN acts on the crank pin. Determine the maximum principal stress and the maximum shear
stress at the centre of the crankshaft bearing.

Crank pin ] /—I—\
15 kN_%_ | .
) /— Crank web @
|
140 mm i\Crank shaft |
N -T
+ / A \
—_—a——-—t— —— 80mm — —(— 4 —|— 3 —|—
| + \ | /
N I /
p
<—120 mmJ '

Fig. 5.18
Solution. Given: W=15kN =15x 103N ; d=80 mm ; y =140 mm ; x = 120 mm
Bending moment at the centre of the crankshaft bearing,
M = Wxx=15x 10%x 120 = 1.8 x 105 N-mm
and torque transmitted at the axis of the shaft,
T =Wxy=15x10%x 140 = 2.1 x 106 N-mm
We know that bending stress due to the bending moment,

M 32M T 3)
_M_ wZ=—xd
o 7 T ( 32><
32x1.8x10°
= —_— =35.8 N/mm2=358 MPa
7 (80)

and shear stress due to the torque transmitted,
16T  16x21x10°

T re 20 N/mm?2 = 20.9 MPa
n T

Maximum principal stress
We know that maximum principal stress,

Cyra) = G—zt + % [«/(Gt)2+ 412}

38 1
5t [\/(35.8)2 +4 (20.9)2] ... (Substituting o, = ,)

179+ 27.5=454 MPaAns.

Top



Contents

152 = A Textbook of Machine Design

Maximum shear stress
We know that maximum shear stress,

1. = )2+ a7 |=1](35872+4(209)
2 2

= 27.5MPaAns.

5.9 Theories of Failure Under Static Load

It has already been discussed in the previous chapter that strength of machine membersisbased
upon the mechanical properties of the materials used. Since these properties are usually determined
from simple tension or compression tests, therefore, predicting failure in members subjected to uni-
axial stressisboth simple and straight-forward. But the problem of predicting the failure stressesfor
members subjected to bi-axial or tri-axial stressesis much more complicated. In fact, the problemis
so complicated that alarge number of different theories have been formulated. The principal theories
of failure for amember subjected to bi-axial stress are asfollows:

1. Maximum principal (or normal) stress theory (also known as Rankine's theory).

2. Maximum shear stress theory (also known as Guest’s or Tresca' s theory).

3. Maximum principal (or normal) strain theory (also known as Saint Venant theory).

4. Maximum strain energy theory (also known as Haigh'stheory).

5. Maximum distortion energy theory (also known as Hencky and Von Mises theory).

Since ductile materials usually fail by yielding i.e. when permanent deformations occur in the
material and brittle materials fail by fracture, therefore the limiting strength for these two classes of
materialsisnormally measured by different mechanical properties. For ductile materials, thelimiting
strength is the stress at yield point as determined from simple tension test and it is, assumed to be
equal in tension or compression. For brittle materials, the limiting strength is the ultimate stress in
tension or compression.

5.10 Maximum Principal or Normal Stress Theory (Rankine’s Theory)

According to thistheory, thefailure or yielding occursat apoint in amember when the maximum
principal or normal stressin abi-axial stress system reaches the limiting strength of the material ina
simpletension test.

Since the limiting strength for ductile materials is yield point stress and for brittle materials
(which do not havewell defined yield point) thelimiting strength isultimate stress, therefore according

Limestone Iron ore Oxygen is
Coke blown into
Pig iron and molten metal The molten steel can
scrap steel then be tapped off.
are poured
into converter

Waste gases
are removed

Converter pours out

____f"- ~.. molten steel

i

Mixed raw
maerials

Hot air |
blasted into’,
furnace

Molten steel fluid can be poured
by into moulds or cast while fuild
Molten slag removed " . Oxygen burns off carbon to

Iron Molten pig iron 4, the pig iron into steel

Pig iron is made from iron ore in a blast furnace. It is a brittle form of iron that contains 4-5 per cent carbon.
Note : This picture is given as additional information and is not a direct example of the current chapter.

Ladle
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to the abovetheory, taking factor of safety (F.S.) into consideration, the maximum principa or normal
stress (o,,) in abi-axial stress system s given by

Oyt . .
——, for ductile materials
F.S

Oy =
oy . .
= Es , for brittle materials
where Oy = Yield point stressin tension as determined from simple tension

test, and
6, = Ultimatestress.

Sincethe maximum principal or normal stresstheory isbased onfailureintension or compression
and ignoresthe possihility of failure dueto shearing stress, thereforeit isnot used for ductile materials.
However, for brittle materialswhich arerelatively strongin shear but weak intension or compression,
thistheory is generally used.

Note : The value of maximum principal stress (c,,) for a member subjected to bi-axial stress system may be
determined as discussed in Art. 5.7.

5.11 Maximum Shear Stress Theory (Guest’s or Tresca’s Theory)

Accordingtothistheory, thefailureor yielding occursat apoint in amember when the maximum
shear stress in a bi-axial stress system reaches a value equal to the shear stress at yield point in a
simpletension test. Mathematically,

Trox = ryt/F.S ()
where Trax = Maximum shear stressin abi-axial stress system,
Ty = Shear stress at yield point as determined from simple tension test,
and

F.S. = Factor of safety.
Since the shear stress at yield point in asimple tension test is equal to one-half the yield stress
in tension, therefore the equation (i) may be written as
(¢
_ wt

T = 5L FS
Thistheory ismostly used for desi g'jn'i ng members of ductile materials.

Note: The value of maximum shear stressin abi-axial stress system (t,,,,) may be determined as discussed in
Art. 5.7.

5.12 Maximum Principal Strain Theory (Saint Venant’s Theory)

Accordingtothistheory, thefailureor yielding occursat apoint in amember when the maximum
principal (or normal) strainin abi-axial stresssystem reachesthelimiting valueof strain (i.e. strain at
yield point) as determined from asimple tensile test. The maximum principal (or normal) strainina
bi-axial stress systemisgiven by

_%u_ %2

. fx T E Tl E
.. According to the above theory,

Ou _ Sw Oyt .
= — - =&€=
fr T E T m.E ExFS. ®
where 6, ad 6, = Maximumand minimum principal stressesin abi-axia stresssystem,

€ = Strain at yield point as determined from simple tension test,
1/m = Poisson’sratio,

E = Young'smodulus, and
F.S. = Factor of safety.
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From equation (i), we may write that
Oz _ Ont
m F.S
Thistheory is not used, in general, because it only gives reliable resultsin particular cases.

Oy —

5.13 Maximum Strain Energy Theory (Haigh’s Theory)

According to this theory, the failure or yielding occurs at a point in amember when the strain
energy per unit volumein abi-axial stress system reachesthelimiting strain energy (i.e. strain energy
at theyield point ) per unit volume as determined from simple tension test.

This double-decker A 380 has a passenger capacity of 5655. Its engines and parts should be robust
which can bear high torsional and variable stresses.

We know that strain energy per unit volume in abi-axial stress system,

1 20yX0
U, = 2E [(th)z +(02)* - %}

and limiting strain energy per unit volume for yielding as determined from simple tension test,

2
o
U2 = i (_ytj
2E \F.S.

According to the above theory, U, = U,

2
e i [(th)z + (6t2)2 - —2 O Gtz} = i [G—ytj

2E m 2E \ F.S.
2
204X0 o
or 6. )2+ (c.)2— £9ux O =[ yt J
(6" * (0) m F.S.

Thistheory may be used for ductile materials.

5.14 Maximum Distortion Energy Theory (Hencky and Von Mises Theory)

According to thistheory, thefailure or yielding occurs at apoint in amember when the distortion
strain energy (also called shear strain energy) per unit volumein abi-axial stress system reachesthe
limiting distortion energy (i.e. distortion energy at yield point) per unit volume as determined from a
simpletension test. Mathematically, the maximum distortion energy theory for yielding is expressed
as

2
(o
_ yt
(62 +(0,)* 20, %0, = ( F.S.j

Thistheory ismostly used for ductile materialsin place of maximum strain energy theory.

Note: The maximum distortion energy isthe difference between the total strain energy and the strain energy due
to uniform stress.
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Example 5.16. Theload on a bolt consists of an axial pull of 10 kN together with a transverse
shear force of 5 kN. Find the diameter of bolt required according to

1. Maximum principal stress theory; 2. Maximum shear stress theory; 3. Maximum principal
strain theory; 4. Maximum strain energy theory; and 5. Maximum distortion energy theory.

Take permissible tensile stress at elastic limit = 100 MPa and poisson’sratio = 0.3.
Solution. Given: P, =10kN ; P,=5kN ; Oya) = 100 MPa= 100 N/mm?; 1/m=0.3
Let d = Diameter of the bolt in mm.

.. Cross-sectional area of the bolt,

'
A= " x 02 = 0.7854 d2 mm?
We know that axial tensile stress,

10 == 12'273 kN/mm?
1 A 0.7854d d

and transverse shear stress,
T = EZ > 5= 63265 kN/mm2
A 07854 d d
1. According to maximum principal stresstheory

We know that maximum principal stress

01+ 0 1
Ou = 12 2+E[\/(01_02)2+4‘52]
+

1273 1 12.73}2 £6.365j2
= +- +4
2d? 2 d? d?
1
2

6.365
+ —
d2
6.365 1 15.365 2 - 15365 )
= 1+ =4+ 4 kN/m N/mm
d? { 2 } d? d?
According to maximum principal stresstheory,

Oy = Oyey OF % =100

d?2 = 15365/100 = 153.65 or d=12.4 mm Ans.
2. Accordmg to maximum shear stresstheory
We know that maximum shear stress,

R IL CEEA L EE MR BRCERL

1 (12.73)1 4(6.365j2 _1 6365
2 d? d? 2 d?

2 knimm? = 20
d? d?

According to maximum shear stress theory,

_ Se) 9000 _ 100
e = or IR =50
d? =9000/50=180 or d=13.42mmAns.
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3. According to maximum principal strain theory
We know that maximum principal stress,

o, 1 15 365
o, = 71 + 3 [J (csl)2 +4 12} = e ...(As calculated before)

and minimum principal stress,

o, =5 5L+ 47

_1273 1] [(1273)" ,(6365)
- 2 5 2 | T 2
2d? 2 d d

_ 6.365 —%x 6.365 [\/mJ

d? d?
_ 6.3265 [1 : \/E] _- 2.2335 KN/mm?2
d d
=_ 2235 N/mm2 Front view of a jet engine. The rotors un-
d

dergo high torsional and bending stfresses.
We know that according to maximum principal strain theory,

c c Ot(a S
16 156
15 365 N 2635x% 0.3 —100 or — = 100

d? =16156/100=161.56 or d=12.7 mmAns.
4. According to maximum strain energy theory
We know that according to maximum strain energy theory,

204X 0O
(th)z + (Gtz)z _ tl t2 — [Gt(el)]z

2 2
[15;;65} {— 3235} Cou 15d?;65 T 3235 % 0.3 = (100)?
236x10° 6.94x10° 24.3x10°
+ +
d* d* d*
23600 694 2430 26724
-t —+ ——=1 or =
d* d*  d* d*
. d*4 =26724 or d=12.78 mm Ans.
5. According to maximum distortion energy theory
According to maximum distortion energy theory,
(th)z + (GIZ)Z - 26t1 X Gpp= [Gt(el)]z

=10x10°

1

2 2
15365]" , [-2635]° , 15365 —2635_ (1002
d? d? d? d?
6 6 6
236(;1 10° 6.94d>‘<1 10° 80.92 :< 10° _ 10y 10?
23600 694 8097 _, 32301
R I

d* =32391 or d=13.4mmAns.
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Example5.17. Acylindrical shaft made of steel of yield strength 700 MPais subjected to static
loads consisting of bending moment 10 kN-mand a torsional moment 30 kN-m. Determinethe diameter
of the shaft using two different theories of failure, and assuming a factor of safety of 2. Take E = 210
GPa and poisson'sratio = 0.25.

Solution. Given: 6,, = 700 MPa= 700 N/mm?; M = 10 kKN-m =10 x 106 N-mm ; T=30kN-m
=30 x 105 N-mm ; FS =2; E =210 GPa= 210 x 10° N/mm?; 1/m= 0.25

Let d = Diameter of the shaft in mm.

First of all, let us find the maximum and minimum principal stresses.

We know that section modulus of the shaft

zZ= % x d 3 = 00982 d® mm®
-, Bending (tensile) stress due to the bending moment,
M  10x10° 101.8x10° )
6, =—- = 3= 3 N/mm
Z 0.0982d d
and shear stress due to torsional moment,

16T _16x30x10° 152.8x10° N
T = = —
nd3 nd3
We know that maximum principal stress,

/mm?

oy = LZGZ+%[\/(01—02)2+ 412]

- %Jr%[w/(cl)zwrz} A 0,=0)

2 2
101.8x10° 1 (101.8 x 10° j (152.8 x 10 j
=+ = —_ | +4| =
2d°® 2 d3 d3

509x10° 1 10°
d® 2 dd

50.9x10° = 161x10° 211.9x10°
FE RS

[JaoL8?+ 4 (15287 |

N/mm?

and minimum principal stress,

O, = LZGZ—%[\/((H—GZ)AL 41:2]

= %_%[1/(01)%412} A~ 6,=0)

50.9x10° 161x10° —110.1x10° )
= — = N/mm

BT RE iE
Let us now find out the diameter of shaft (d) by considering the maximum shear stress theory
and maximum strain energy theory.

1. According to maximum shear stresstheory
We know that maximum shear stress,
Gu—6p 1 {211.9 x10° 110.1x 106} _ 161x 10°

R R R R o
We also know that according to maximum shear stresstheory,
Oyt 161x10° 700
= = =175
T 5Fs U T T ox2

d3 = 161 x 108/ 175=920 x 10% or d=97.2 mm Ans.
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Note: The value of maximum shear stress (., ) may aso be obtained by using the relation,

Ty = %[1/ (0)%+ 412J

1] |(1008x10°)"  (152.8x10°)’
N e )T e

- %xg[\/(1018)2+4(1528) ]

6 6
= 1,20 s gpp  1OXIO" e
27 d

...(Same as before)
2. According to maximum strain energy theory
We know that according to maximum strain energy theory,

2
1 20t1><0t2} 1 (cytj
O + (G - —
B A e

20.,X0O o
or 6.)2+ (5.)2 — 17 V12 =[ vt j
(0" + (o) m F.S.
2 2
211.9% 10° —-110.1x10° 211.9x10° -110.1x10° 700
e + e —-2X e X e x 0.25 =
44902 x 10 12122x 102 11665 x 107

or 40 + e + e =122 500

68 689 x 10
d6
d 6 = 68 689 x 10'%/122 500 = 0.5607 x 10'? or d =90.8 mm Ans.
Example 5.18. Amild steel shaft of 50 mm diameter is subjected to a bending moment of 2000
N-mand a torque T. If the yield point of the steel in tension is 200 MPa, find the maximum val ue of

thistorque without causing yielding of the shaft according to 1. the maximum principal stress; 2. the
maximum shear stress; and 3. the maximum distortion strain energy theory of yielding.

Solution. Given: d =50 mm ; M = 2000 N-m = 2 x 106 N-mm ; o,, = 200 MPa= 200 N/mm?

Let T = Maximum torque without causing yielding of the shaft, in N-mm.
1. According to maximum principal stresstheory

We know that section modulus of the shaft,

=122 500

Z= 32 xd®=—- (50)3— 12 273 mm?®
*. Bending stress due to the bending moment,
6
o = M _2X10° 163 Njmm?
oz 12273

and shear stress due to the torque,
16T 16T
nd® & (50)

T = 7 =0.0407 x 102 T N/mm?

{T :%xrxdﬂ
We know that maximum principal stress,

c 17 -2 . 2
Oy = 21+2|: ((51)2+4‘Cz:|

- 123 111637+ 4 (00407 x 10°T)? |
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= 815+ 6642.5+ 1.65x 10° T2 N/mm?

o = G 5[ av]
_ 1_6233 _% /(1637 + 4 (0.0407 x10°T)? |

= 815 —  6642.5 + 1.65x 10 T2 N/mm?

Minimum principal stress,

and maximum shear stress,

T = 3 [ (007 + 477 | = 1 [/ 163 + 4 (00407 x 10°°T)? |

= /66425 + 1.65x 10° T2 N/mm?
We know that according to maximum principal stress theory,

Gy = Oy ..(TakingF.S =1)

815 + / 6642.5 + 1.65x 102 T2 = 200
66425+ 1.65+ 102 T2 = (200 — 81.5)2 = 14 042
, 14042 — 66425

1.65x107°
or T = 2118 x 108 N-mm = 2118 N-m Ans.

2. According to maximum shear stresstheory
We know that according to maximum shear stress theory,

= 4485 x 10°

Trex = Tyt = GTyt
- /66425 +165x10°T? = % =100
6642.5+ 1.65 x 10-° T 2= (100)2 = 10 000
ro o 1000066025 0 1o
1.65x 10

o T =1426 x 10° N-mm = 1426 N-m Ans.
3. According to maximum distortion strain energy theory
We know that according to maximum distortion strain energy theory
(th)z + (GtZ)Z —Gy XO0p = (Gyt)z

[81.5 +/6642.5 + 1.65x 109 T2 T + [81.5 — /66425 + 1.65x 1077 T2 ]2

- [81.5 +|/6642.5+ 1.65x 109 T2 } [81.5 — |/6642.5+ 1.65x 107 T2 } = (200)

2[(81.5)%+ 6642.5 + 1.65x 10° T2 | — [ (81.5)> — 6642.5+ 1.65 x 10° T | = (200)?

(8L.5)% + 3 x 6642.5 + 3 x 1.65 x 10 T 2 = (200)2
26 570 + 4.95 x 10- T 2 = 40 000

T2_4OOOO—26570

4.95x107°
T =1647 x 108 N-mm = 1647 N-m Ans.

= 2713 x10°
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5.15 Eccentric Loading - Direct and Bending Stresses Combined

An external load, whose line of action is parallel but does not coincide with the centroidal axis
of the machine component, is known as an eccentric load. The distance between the centroidal axis
of the machine component and the eccentric load is called eccentricity and is generally denoted by e.
The examples of eccentric loading, from the subject point of view, are C-clamps, punching machines,
brackets, offset connecting links etc.

Y P Y P Y Y P Y P
—>|e¢<— Pl, e < ¢P1=P —>|e¢<— ﬂer—
I |
P
! T ? ! Py=P P2|
|
| | | | '
| | | ! |
T T T T
Y Y Y Y Y
C I A | I |
| | |P1=H N
P | P p
T AR T IRz
| P\=pP, | h
D ! B I [
_L Tensile
Tt
o+,
Direct compressive _ Compressive _L
stress diagram. Bending stress '
diagram. Combined direct and
bending stress diagram.
(a) (b) () (d) (e)

Fig. 5.19. Eccentric loading.

Consider ashort prismatic bar subjected to acompressiveload P acting at an eccentricity of eas
shown in Fig. 5.19 (a).

Let usintroducetwo forces P, and P, along the centre line or neutral axis equal in magnitudeto
P, without altering the equilibrium of the bar as shown in Fig. 5.19 (b). A little consideration will
show that the force P, will induce adirect compressive stress over the entire cross-section of the bar,
asshown in Fig. 5.19 (c).

The magnitude of this direct compressive stressis given by

P P
c, = Kl or A where A isthe cross-sectional area of the bar.

The forces P, and P, will form a couple equal to P x e which will cause bending stress. This
bending stress is compressive at the edge AB and tensile at the edge CD, as shown in Fig. 5.19 (d).
The magnitude of bending stress at the edge AB is given by

P.e.y, .
o, = — (compressive)
and bending stress at the edge CD,
P.e.
o, = ——N (tensile)
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where y, andy, = Distancesof the extremefibreson the compressive and tensilesides,

from the neutral axis respectively, and

I = Second moment of area of the section about the neutral axisi.e.

Y-axis.
According to the principle of superposition, the maximum or the resultant compressive stress at
the edge AB,
%= T A~z A T

and the maximum or resultant tensile stress at the edge CD,

_Pey P.M P__
%= T Az A b7

The resultant compressive and tensile stress diagram is shown in Fig. 5.19 (e).

“Turbines

™ Turbine shaft
Combustion chamber

~™= Spark plug

Fuel line

Compressor

In a gas-turbine system, a compressor forces air info a combustion chamber. There, it mixes with fuel.
The mixture is ignited by a spark. Hot gases are produced when the fuel burns. They expand and drive

a series of fan blades called a turbine.

Note : This picture is given as additional information and is not a direct example of the current chapter.

Notes: 1. When the member is subjected to a tensile load, then the

Load
point

above equations may be used by interchanging the subscripts c and t.

stress 6, then the compressive stress shall be present all over the
Ccross-section.

3. Whenthedirect stress o, isless than the bending stress o, Xq———-
then the tensile stress will occur in the left hand portion of the cross- I

section and compressive stress on the right hand portion of the cross- —ry—

section. In Fig. 5.19, the stress diagrams are drawn by taking o, less |

2. Whenthedirect stress o, isgreater than or equal to bending i l/
| |

than o,
In case the eccentric |oad acts with eccentricity about two axes, Y

asshown in Fig. 5.20, then the total stress at the extreme fibre Fig. 5.20. Eccentric load with

_P,.P.e.x _P.&.y

A IXX IYY

eccentricity about two axes.

| |
* We know that bending moment, M = P.e and section modulus, Z = v yeor Wi
c

Bending stress, 6, =M/ Z
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Example5.19. A rectangular strut is 150 mmwide and 120 mm thick. It carries a load of 180
kN at an eccentricity of 10 mmin a plane bisecting the thickness as shown in Fig. 5.21. Find the
maximum and minimum intensities of stressin the section.

Solution. Given : b =150 mm; d = 120 mm; P = 180 kN

=180x 108N ; e=10mm 10 mm ~_ 0 KN
We know that cross-sectional area of the strut, e
A =b.d =150 x 120
= 18 x 10° mm?

:
.. Direct compressive stress, !
P 180x10° |

6. = —=—"—%
° A 18x10° l
10 N/mm?2 = 10 MPa |
Section modulus for the strut, I

lyy d.b*/12 d.b?
/= —= =
y b/2 6
120 (150)2
6
450 x 10° mm3
Bending moment, M = Pe=180x 10° x 10
= 1.8 x 105 N-mm

: M 18x10° .
Bending stress, 6, = —-=——— .

Z 450%10 Fig. 5.21
= 4 N/mm?=4MPa

Since o, is greater than o, therefore the entire cross-section of the strut will be subjected to
compressive stress. The maximum intensity of compressive stress will be at the edge AB and

minimum at the edge CD. 20 kKN
. Maximum intensity of compressive stress at the edge AB
L—f— 500 —
|

=0,+0,=10+4=14MPaAns. !
and minimum intensity of compressive stress at the edge CD |
|
|

=0,-0,=10-4=6MPaAns.
Example5.20. Ahollow circular column of external diameter

250 mmand internal diameter 200 mm, carriesa projecting bracket
onwhich aload of 20 kN rests, as shown in Fig. 5.22. The centre of @,\/

the load fromthe centre of the column is 500 mm. Find the stresses <200
at the sides of the column. [ 250 >
Solution. Given : D = 250 mm; d = 200 mm; |
P=20kN =20x 10°N ; e=500 mm r
We know that cross-sectional area of column, _ * ~
v
A=— (D?-d?
4 L |
T Tensil
= 7 [(2502~ (2002 9.91 MPa enste y
= 17 674 mm? 317 MPa
. Direct compressive stress, Compressive '
P 20x10° 2 S
6. = —=———=113N/mm All dimensions in mm.
° A 17674 Eic 525
= 113 MPa 'g- >
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Section modulus for the column,
T 4 4 b
1D _d Rl 4_ 4
L1 at?] g [0 - 0]

y D/2 250/2
=905.8 x 10° mm?3

Bending moment,

Positioning

M = Pe gears Transmission
=20 x 10® x 500 Turbine head
=10 x 10° N-mm | :
. i Contro - el
. Bending stress, clectronics '\l y _%: -t Drive shatt
6 adjust position ™= -
_ M = & of wind turbine :
% T Z 0058x10°  head :

5 Internal ladder

11.04 N/mm allow access to

11.04 MPa wind turbine
. . . head

Since o, is less than o, therefore right

hand side of the column will be subjected to

compressive stressand theleft hand side of the

column will be subjected to tensile stress.

" Vents for cooling
air

Turbine blade
. Maximum compressive stress,

6, =0,+0,=11.04+ 113

= 12.17MPaAns. Note : This picture is given as additional information and
and maximum tensile stress, is not a direct example of the current chapter.
6, =6,-0,=11.04-1.13=9.91 MPaAns.

Example 5.21. A masonry pier of width 4 m and thickness 3 m, supports a load of 30 kN as
shown in Fig. 5.23. Find the stresses devel oped at each corner of the pier.

Solution. Given: b=4m;d=3m;P=30kN;eX=0.5m;ey=1m
We know that cross-sectional area of the pier,
A=bxd=4x3=12n?

Wind turbine.

Load point
Moment of inertia of the pier about X-axis, C Y / Aoa pom
b.d® 4x3 4 < _f T
| = = = 9 m lm'H Im x
ST S 4 1
and moment of inertia of the pier about Y-axis, o _|_ _05m 1y i
d.b® 3x4 . ' 1
lyy = = =16 m |
12 12 y
Distance between X-axis and the corners A and B, |
Xx=3/2=15m D N B
< |
Distance between Y-axis and the corners A and C, 4m -

We know that stress at corner A,

P.e.
GA:E+P.eX.x+ &y
A Ixx

..[ At A both xandy are +ve]
lvy
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@4_ 30X0'5X1'5+ 0x1x2
12 9 16

=25+25+3.75=8.75kN/m? Ans.
Similarly stressat corner B,

P.e.
E+P.ex.x_ &y

Og = ..[ AtB,xis+veandyis-ve]
A IXX IYY
_ @Jr 30x05x15 30x1x2
T 12 9 16
=25+25-375=1.25kN/m2Ans.
Stress at corner C,
P P.e.x P.g.y
Oc= 7~ & + el ... [AtC, xis—veand yis+ve]
A IXX IYY
_ §—3OXO'SX1'5+ 30x1x 2
12 9 16
=25-25+375=3.75kN/m2Ans.
and stress at corner D,
P P.e.x P.e.y
Op = ~ — & - ey ... [At D, both xand y are — ve]
A lXX IYY
_ @_30><0.5><1.5 B 0x1x2
T 12 9 16

2.5—-25-3.75=—3.75 KN/m?= 3.75 KN/m? (tensile) Ans.

Example 5.22. A mild steel link, as shown in Fig. 5.24 by full lines, transmits a pull of 80 kN.
Find the dimensions b and t if b = 3t.
Assume the permissible tensile stress as /___f_ - T TS
|l

Ve
70 MPa. If the original link is replaced
by an unsymmetrical one, as shown by

/
= f b \
dotted linesin Fig. 5.24, having the same A r
thickness t, find the depth b,, using the P - - P
same permissible stress as before.
P | "I ! I‘_T

Solution. Given : P = 80 kN

=80 x 103N ; 5,= 70 MPa= 70 N/mm? =0 G2
When the link isin the position shown by full linesin Fig. 5.24, the area of cross-section,
A=bxt=3txt=3t2 (v b=3t)

We know that tensile load (P),
80x10%® =6, x A=70 x 312 = 210 t?
. t2 = 80 x 103/ 210=381 or t=19.5say 20 mm Ans.
and b=3t=3x20=60mmAns

When thelink isin the position shown by dotted lines, it will be subjected to direct stressaswell
as bending stress. We know that area of cross-section,

A =Db xt
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Direct tensile stress,

_P__P
%~ A bxt
d bendi _M_P.e_6P.e [ . t(bl)zj
and bending stress, o, =7 Z t (by)? 2=
.~ Total stress due to eccentric loading
6P.e P P (6e
= Op + 0y = >+ = —+1
t(b)? bxt t.b (b
Since the permissible tensile stress is the same as 70 N/mm?, therefore
3 3
_ 80x10° (6xb, +1) = 16x10 ( Eccentricity, ezgl)
20b; \byx2 b, 2

b, = 16 x 103/ 70 = 228.6 say 230 mm Ans.

Example5 23. Acast-iron link, as shown in Fig. 5.25, isto carry aload of 20 kN. If thetensile
and compressive stresses in the link are not to exceed 25 MPa and 80 MPa respectively, obtain the
dimensions of the cross-section of the link at the middle of its length.

2a
—>{3
A
1 3a i 1
20 kN - — :i::a - 20 kN
i |<_3a_>| ) .
Fig. 5.25
Solution. Given: P=20kN =20 x 103N ; Oymax) = 25 MPa=25 N/mm?; o, ( =80 MPa
= 80 N/mm? 2a

Sincethelink issubjected to eccentric loading, thereforethere —»| 3 |<_ —>| 3 |<—
will be direct tensile stress as well as bending stress. The bending
stress at the bottom of thelink istensile and in the upper portionis
compressive. _L :

We know that cross-sectional area of thelink, N

A:3a><a+2><2—::1 X 2a

= 5.67 a2 mm?
-. Direct tensile stress,

3
_P_20x10°_353%0

%~ A se7a?  a
Now let us find the position of centre of gravity (or neutral axis) in order to find the bending

stresses.

Let 9 = Distanceof neutral axis(N.A.) from the bottom of thelink asshown
inFig. 5.26.
. 3ax % + 2% 4% x 2a
= =12amm
Y 5.67 a?
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Moment of inertiaabout N.A.,

2 3
, , 3 ax (2a) 452
+3a“(l.2a—0.5a8)“ |+ 2

+— (2a-1.2a)°
3 ( )

|- [Sa xa’
12
= (0.25 a* + 1.47 a% + 2 (0.44a* + 0.85 a*) = 4.3 a* mm*
Distance of N.A. from the bottom of the link,
y, =y =1l2amm
Distance of N.A. from the top of thelink,
y. =3a-1l2a=18amm
Eccentricity of theload (i.e. distance of N.A. from the point of application of the load),
e=12a-05a=0.7amm
We know that bending moment exerted on the section,
M = Pe=20x10%x 0.7a= 14 x 10°aN-mm
. Tensile stressin the bottom of the link,

oM M M.y, 14x10®ax12a 3907
vtz ly, I 43a* a?

and compressive stress in the top of thelink,

M _ M _ M.y _14x10°ax18a _ 5860
%z T 1ly, | 434" a’

We know that maximum tensile stress [, (max)] ;

3907 5860 9767

25 =0+ 0 = 2 2 2
a® =9767/25=390.7 or a=19.76mm (1)
and maximum compressive stress [co(mx)],
80 = o, — 0, = 58(230 3 3530 _ 2330
a a a
a? =2330/80=29.12 or a=54mm (1)

We shall take the larger of thetwo values, i.e.
a = 19.76 mm Ans.

Example5.24. Ahorizontal pull P= 5kN isexerted by the belting on one of the cast iron wall
brackets which carry a factory shafting. At a point 75 mm from the wall, the bracket has a T-section
asshown in Fig. 5.27. Cal culate the maximum stressesin the flange and web of the bracket dueto the
pull.
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All dimensions in mm.

Fig. 5.27

Solution. Given : Horizontal pull, P =5kN =5000 N

Sincethe sectionis subjected to eccentric loading, therefore there will be direct tensile stressas
well as bending stress. The bending stress at the flange istensile and in the web is compressive.

We know that cross-sectional area of the section,

A =60 x 12+ (90— 12)9 = 720 + 702 = 1422 mn?
.. Direct tensile stress,c, = P _ 5000 =3.51 N/mm? = 3.51 MPa
O A 1422

Now let us find the position of neutral axis in order to determine the bending stresses. The

neutral axis passes through the centre of gravity of the section.

Let y = Distanceof centreof gravity (i.e. neutral axis) fromtop of theflange.
_ 60><12><12+78><9(12+78)
y = 2 27 _ 282 mm
720 + 702
Moment of inertia of the section about N.A.,

+720 (28.2 - 6)2} + [%28)3 + 702 (51— 28.2)2}

. {60(12)3
- 12

= (8640 + 354 845) + (355 914 + 364 928) = 1 084 327 mm*

. ST - L LT
= f‘_._ . ; ——
This picture shows a reconnoissance helicopter of air force. Its dark complexion absorbs light that falls
on its surface. The flat and sharp edges deflect radar waves and they do not return back to the radar.
These factors make it difficult to detect the helicopter.
Note : This picture is given as additional information and is not a direct example of the current chapter.
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Distance of N.A. from the top of theflange,
y, = y =282mm
Distance of N.A. from the bottom of the web,
Y, = 90-282=61.8mm
Distance of N.A. from the point of application of the load (i.e. eccentricity of the load),
e = 50+282=782mm
We know that bending moment exerted on the section,
M = P xe=5000x 78.2=391 x 10°N-mm
. Tensile stressin the flange,
M M M.y 391x10°x 28.2

6, = —= = =10.17 N/mm?
oz 1y I 1084 327
= 10.17 MPa
and compressive stressin the web,
3
o = M_ M _M.y _391x10°x618 _ 29 28 N/mm>
¢ Z, Iy, I 1084 327
= 22.28 MPa

We know that maximum tensile stressin the flange,
Oimaxy = Op+ 0, =0+ 0, = 10.17 + 3.51 = 13.68 MPaAns.
and maximum compressive stressin the flange,
Ogmax) = Op —0p =0, =0 = 22.28 —3.51 =18.77 MPa Ans.
Example 5.25. A mild steel bracket as shown in Fig. 5.28, is subjected to a pull of 6000 N
acting at 45° to its horizontal axis. The bracket has a rectangular section whose depth is twice the

thickness. Find the cross-sectional dimensions of the bracket, if the permissible stressin the material
of the bracket is limited to 60 MPa.

Solution. Given: P =6000N ; 6 =45°; ¢ =60 MPa= 60 N/mm?
Let t = Thickness of the section in mm, and
b = Depth or width of the section=2t ...(Given)

We know that area of cross-section,
A=bxt=2txt=2t2mm?

t x b? L
and section modulus, Z= 5 T Py
t (20)° ’ 75 mm 45°
= 6 —>| t |<— |
i p 6000 N
41° 3 % * v
=—mm® T T T T
6 y
Horizontal component of the load, —b
P,, = 6000 cos45°
= 6000x0.707 e 130mm——"—>

= 4242N Fig. 5.28

. Bending moment due to horizontal
component of the load,

M,, = P, x 75=4242 x 75 = 318 150 N-mm
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A little consideration will show that _ ——,
the bending moment duetothe horizontal ~ TUine
component of the load induces tensile "3t
stress on the upper surface of the bracket Generator_ ==
and compressive stress on the lower ™
surface of the bracket.

~. Maximum bending stress on
the upper surface due to horizontal

Component' Curved =
blades
_My

o Z Water
318150 % 6 Schematic of a hydel turbine.

3 Note : This picture is given as additional information
4t and is not a direct example of the current chapter.

Water =

477 225
t3

N/mm? (tensile)

Vertical component of the load,
P, = 6000 sin 45° = 6000 x 0.707 = 4242 N
.~. Direct stress due to vertical component,

_ R 4242 2121 2 .
Oy = VN N/mm< (tensile)
Bending moment due to vertical component of the load,
M, = P, x 130 = 4242 x 130 = 551 460 N-mm

This bending moment induces tensile stress on the upper surface and compressive stress on the
lower surface of the bracket.

.. Maximum bending stress on the upper surface due to vertical component,

G = M, 551460x6 827190
v T 7 413 3
and total tensile stress on the upper surface of the bracket,
477225 2121 827190 1304 415 N 2121

N/mm? (tensile)

T t2 t3 t3 t2
Since the permissible stress (o) is 60 N/mm?, therefore
1304 415 2121 21740 354
3 + > = 60 or 3 + —2 = 1
t t t t
o t =284 mmAns. ... (By hit and trial)
and b =2t =2x284=56.8mm Ans.

Example 5.26. A C-clamp as shown in Fig. 5.29, carriesaload P = 25 kN. The cross-section
of the clamp at X-X isrectangular having width equal to twice thickness. Assuming that the clamp is
made of steel casting with an allowable stress of 100 MPa, find its dimensions. Also determine the
stresses at sections Y-Y and Z-Z.

Solution. Given: P=25kN =25x 103N ; ¢ =100 MPa= 100 N/mm?

t(max)
Dimensions at X-X
Let t = Thickness of the section at X-X in mm, and
b = Width of the sectionat X-Xinmm= 2t ...(Given)
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We know that cross-sectional areaat X-X, Y 140 mm —s-
A =bxt=2txt=2t2mm? b Z
. Direct tensile stress at X-X, 45f X’__!__ -
7
P 25x10° TN
T | Y
2t | 40
125%x10° i
= === N/mm® X—-—I—-——-X
t > b €
Bending moment at X-X dueto theload P, | 02 P
M = Pxe=25x10°x 140 | —j—
_ N
= 35x 10°N-mm 1
t.b? t()? 4t
Section modulus, Z= 5 - (6) = mm? <— 150 mm —>
Fig. 5.29
(v b=2Y

. Bending stress at X-X,
M 35x10°x6 5.25x10°

o, = — = N/mm? (tensile
N 4¢3 2 (tensle)
We know that the maximum tensile stress[c, (max)] ,
125x10®° 525x10°
100 =o,+0, = 2 + a
3
or @+52.5><10 _1-0
t2 t3
o t = 38.5mmAns. ...(By hit and trial)
and b=2t=2x385=77mmAns.

Stresses at section Y-Y

Since the cross-section of frame is uniform throughout, therefore cross-sectional area of the
frame at section Y-Y,

A =Dbsec45° xt =77 x 1.414 x 38.5 = 4192 mm?
Component of the load perpendicular to the section
= Pcos45° =25x 103 x 0.707 = 17 675N
This component of the load produces uniform tensile stress over the section.
. Uniform tensile stress over the section,
o = 17675/ 4192 = 4.2 N/mm? = 4.2 MPa
Component of the load parallel to the section
= Psin45° =25x10%x 0.707 =17 675N
This component of the load produces uniform shear stress over the section.
-~ Uniform shear stress over the section,
T = 17675/ 4192 = 4.2 N/mm? = 4.2 MPa
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We know that section modulus,
t (b sec 45°)> 385 (77 x 1.414)?
Z= =
6 6
Bending moment dueto load (P) over the section Y-Y,

M = 25x10°x 140=3.5x 10°N-mm
-. Bending stress over the section,

M 35x10° 5
=SS5 =——3 =46 N/mm? =46 MPa
Z 76x10

Dueto bending, maximum tensile stress at theinner corner and the maximum compressive stress
at the outer corner is produced.

. Maximum tensile stress at the inner corner,
0, = 0,+0,=46+4.2=502MPa
and maximum compressive stress at the outer corner,
0, = 0,—0,=46-4.2=41.8MPa
Since the shear stress acts at right angles to the tensile and compressive stresses, therefore
maximum principal stress (tensile) on the section Y-Y at the inner corner

= G+ sbleteart |22 202t ax e Jwea

= 25.1+25.4=50.5MPaAns.
and maximum principal stress (compressive) on section Y-Y at outer corner

- %+%[,/(oc)2+4rz]=£2'8+%[\/(41.8)2+ 4% (42?2 | MPa
= 209+21.3=42.2 MPaAns.
Maximumshear stress = 3[ /(02 + 472 | =3[ /(5027 + 4x (42)? | = 25.4 MPa Ans

Stresses at section Z-Z

=76 x 103 mm?®

Op

We know that bending moment at section Z-Z,
= 25x 10° x 40 = 1 x 105 N-mm

t.b?> 385(77)°
6 6
.. Bending stress at section Z-Z,
M 1x10°
O, = 5 =— 3 = 263N/mm?=263MPaAns.
Z 38x10

Thebending stressistensile at theinner edge and compressive at the outer edge. The magnitude
of both these stressesis 26.3 MPa. At the neutral axis, thereisonly transverse shear stress. The shear
stress at the inner and outer edges will be zero.

We know that * maximum transverse shear stress,

=38 x 103 mm3

and section modulus, Z =

P 25x 10°
Toax = 1.5 % Average shear stress= 1.5x— =15

X —
b.t 77 % 38.5
= 12.65 N/mm? = 12.65 MPa Ans.

*  Refer Art. 5.16
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h Sluice gate Dam Spillway

-—

\

Water fromthe  The flow of Turbinesdrive  Cables carry Excess water
reservoir water makes generator to away the flows over
passes through  the turbine shaft  produce electricity for spillway

a gate turn electricity use

General layout of a hydroelectric plant.

Note : This picture is given as additional information and is not a direct example of the current chapter.

5.16 Shear Stresses in Beams

In the previous article, we have assumed that no shear force is acting on the section. But, in
actual practice, when abeam isloaded, the shear force at a section always comesinto play along with
the bending moment. It has been observed that the effect of the shear stress, as compared to the
bending stress, is quite negligible and is of not much importance. But, sometimes, the shear stress at
asection is of much importance in the design. It may be noted that the shear stressin abeam is not
uniformly distributed over the cross-section but varies from zero at the outer fibresto a maximum at
the neutral surface as shown in Fig. 5.30 and Fig. 5.31.

- A

I h
y 2
N Yy

SN

Fig. 5.30. Shear stressin arectangular beam. Fig. 5.31. Shear stressin acircular beam.

The shear stressat any section actsin aplane at right angleto the plane of the bending stressand
itsvalueisgiven by

F —
T = WXAy
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where F = Vertical shear force acting on the section,
I = Moment of inertiaof the section about the neutral axis,
b = Width of the section under consideration,
A = Areaof the beam above neutral axis, and

y = Distance between the C.G. of the areaand the neutral axis.

Thefollowing values of maximum shear stressfor different cross-section of beamsmay be noted

1. For abeam of rectangular section, as shown in Fig. 5.30, the shear stressat adistancey from
neutral axisisgiven by

F (h? zj 3F { b.hﬂ
= —|—- = h2 — 4y? I XN =
2l (4 y 2b.hd ( y) 12
and maximum shear stress,

3F ( " h)

= — Substituting y=—

T 5 h gy 5

o _F _F

=15 T(average) .| © “(average) — Area_ b.h

The distribution of stressis shownin Fig. 5.30.
2. For abeam of circular section as shown in Fig. 5.31, the shear stress at a distance y from

neutral axisisgiven by
F (d? 2) 16F > , >
=—|—- = d--4
T ( 2V ) g @)

and the maximum shear stress,

T = L ...| Substituting y = 9
max T 2 2
3x 4 d
4 .. ‘[ = 7': = F
= § T(average) | e Area % d?

The distribution of stressisshownin Fig. 5.31.

3. For abeam of I-section asshownin Fig. 5.32, the maximum shear stressoccurs at the neutral
axisandisgiven by

FlB, , b.hz}
=—|—=(H“=h —_—
T I.b[S( ) 8
s ——]
T b |
H PR
H?2 % h
| 2R I
—3 p a—
Flange
N /Web
| |
Fig. 5.32
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Shear stress at the joint of the web and the flange

= = (H2-1)
and shear stress at the junction of the top of the web and bottom of the flange

F
= —x— (H2-h?
=3 ( )
The distribution of stress |sshown inFig. 5.32.

Example 5.27. A beam of |-section 500 mm deep and 200 mm wide has flanges 25 mm
thick and web 15 mmthick, as shownin Fig. 5.33 (a). It carries a shearing force of 400 kN. Find
the maximum intensity of shear stress in the section, assuming the moment of inertia to be
645 x 108 mm*. Also find the shear stress at the joint and at the junction of the top of the web
and bottom of the flange.

Solution. Given : H =500 mm; B =200 mm; h =500 — 2 x 25 = 450 mm; b = 15 mm;
F =400kN =400 x 103N ; | = 645 x 10 mm*

3.7 MPa

15 —

h
N =— \ 500
2

Flange

0
|<—200 —>|

All dimensions in mm.

(b)

Fig. 5.33
Maximum intensity of shear stress
We know that maximum intensity of shear stress,

F B, , ., b.hz}
= 2 HZ-n?) + 2
Tmex I.b[S( )+ 73
3 2
= 20x10 [200 (5002 — 4507) + 12X 4507 }N/mmz
645 x 10° x 15

= 64.8 N/mm? = 64.8 MPaAns.
The maximum intensity of shear stress occurs at neutral axis.

Note : The maximum shear stress may also be obtained by using the following relation :

_ F.A.y

max I .b

We know that area of the section above neutra axis,

450
A =200 x 25+ Y x 15 = 8375 mm?
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Distance between the centre of gravity of the areaand neutral axis,

v = 200x25(225+12.5) + 225x15%x112.5

y =187 mm
8375
400x 10°x 8375 x 187 )
Trax = 5 =64.8 N/mm? = 64.8 MPaAns.
645% 10°%x 15

Shear stress at thejoint of the web and the flange
We know that shear stress at the joint of the web and the flange

3
_ F (n2_pp) - _400x10 :

8l 8x 645x%x 10
= 3.7N/mm?2=3.7MPaAns.

[ (500) - (450)? | N/mm?

Shear stress at the junction of the top of the web and bottom of the flange
We know that shear stress at junction of the top of the web and bottom of the flange

3
- P Bmrm =&m6
8 b 8x 645x10

= 49 N/mm? = 49 MPaAns.

x % [ (500)2— (450)2 | N/mm?

The stress distribution is shown in Fig. 5.33 (b)

EXERCISES

A steel shaft 50 mm diameter and 500 mm long is subjected to a twisting moment of 1100 N-m, the
total angle of twist being 0.6°. Find the maximum shearing stress devel oped in the shzaft and modulus
of rigidity. [Ans. 44.8 M Pa; 85.6 kN/m?|

A shaft istransmitting 100 kW at 180 r.p.m. If the allowable stressin the material is 60 MPa, find the
suitable diameter for the shaft. The shaft is not to twist more than 1° in a length of 3 metres.
Take C = 80 GPa. [Ans. 105 mm]

Design a suitable diameter for a circular shaft required to transmit 90 kW at 180 r.p.m. The shear
stress in the shaft is not to exceed 70 MPa and the maximum torque exceeds the mean by 40%. Also
find the angle of twist in alength of 2 metres. Take C = 90 GPa. [Ans. 80 mm; 2.116°]

Design a hollow shaft required to transmit 11.2 MW at a speed of 300 r.p.m. The maximum shear
stress allowed in the shaft is 80 MPa and the ratio of the inner diameter to outer diameter is 3/4.
[Ans. 240 mm; 320 mm]

Compare theweights of equal lengths of hollow shaft and solid shaft to transmit agiven torque for the
same maximum shear stress. The material for both the shafts is same and inside diameter is 2/3 of
outside diameter in case of hollow shaft. [Ans. 0.56]

A spindle as shown in Fig. 5.34, isapart of an industrial brake and is loaded as shown. Each load P
isequal to 4 kN and is applied at the mid point of its bearing. Find the diameter of the spindle, if the

maximum bending stress is 120 MPa. [Ans. 22 mm]
—> 25mm |«——— 125 mm » 25 mm le—
y P yP
I” I*
Fig. 5.34

7. A castiron pulley transmits 20 kW at 300 r.p.m. The diameter of the pulley is 550 mm and has four

straight arms of elliptical cross-section in which the major axis is twice the minor axis. Find the
dimensions of the arm, if the allowable bending stressis 15 MPa. [Ans. 60 mm; 30 mm]
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8. A shaftissupported in bearings, the distance between their centresbeing 1 metre. It carriesapulley in
the centre and it weighs 1 kN. Find the diameter of the shaft, if the permissible bending stress for the
shaft material is 40 MPa. [Ans. 40 mm]

9. A punch press, used for stamping sheet metal, has a punching capacity of 50 kN. The section of the
frameis as shown in Fig. 5.35. Find the resultant stress at the inner and outer fibre of the section.
[Ans. 28.3 MPa (tensile); 17.7 M Pa (compressive)]

A
X (0]
| 100 ¥
N
l I
|
I
| | - I
= 200 ¢St
7
100 300
Section at X-X
Section at A-A
All dimensions in mm. All dimensions in mm.
Fig. 5.35 Fig. 5.36
10. A crane hook has a trapezoidal section at A-A as shown in Fig. 5.36. Find the maximum stress at
points P and Q. [Ans. 118 M Pa (tensile); 62 M Pa (compressive)]

11. A rotating shaft of 16 mm diameter is made of plain carbon steel. It is subjected to axial 1oad of 5000
N, asteady torque of 50 N-m and maximum bending moment of 75 N-m. Calculatethe factor of safety
available based on 1. Maximum normal stress theory; and 2. Maximum shear stress theory.

Assume yield strength as 400 MPa for plain carbon steel. If al other data remaining same, what
maximum yield strength of shaft material would be necessary using factor of safety of 1.686 and
maximum distortion energy theory of failure. Comment on the result you get.

[Ans. 1.752; 400 M Pa]

12. A hand cranking lever, as shown in Fig. 5.37, is used to start a truck engine by applying a force
F =400 N. The material of the cranking lever is 30C8 for which yield strength = 320 MPa; Ultimate
tensile strength = 500 MPa ; Young's modulus = 205 GPa ; Modulus of rigidity = 84 GPaand poisson’s

ratio=0.3.
, F
e
|
|
X : 200 mm
|
| Y / |
e
!-44 400 mm —»!

Fig. 5.37
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Assuming factor of safety to be 4 based onyield strength, design thediameter ‘d’ of thelever at section
X-X near the guide bush using : 1. Maximum distortion energy theory; and 2. Maximum shear stress
theory. [Ans. 28.2 mm; 28.34 mm]
An offset bar is loaded as shown in Fig. 5.38. The weight of the bar may be neglected. Find the
maximum offset (i.e., the dimension x) if allowable stressin tension is limited to 70 MPa.

[Ans. 418 mm]

10 kN

All dimensions in mm. All dimensions in mm.

Fig. 5.38 Fig. 5.39

A crane hook made from a50 mm diameter bar is shown in Fig. 5.39. Find the maximum tensile stress
and specify itslocation. [Ans. 35.72 MPaat A]
An overhang crank, as shown in Fig. 5.40 carries a tangential load of 10 kN at the centre of the
crankpin. Find the maximum principal stress and the maximum shear stress at the centre of the crank-

shaft bearing. [Ans. 29.45 M Pa; 18.6 M Pa]
e
R et
T 50

I

}ioﬂz_sk— e 1(;0 —

All dimensions in mm. All dimensions in mm.

Fig. 5.40 Fig. 5.41

A steel bracket is subjected to a load of 4.5 kN, as shown in Fig. 5.41. Determine the required
thickness of the section at A-A in order to limit the tensile stress to 70 MPa. [Ans. 9 mm]
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17.

A wall bracket, as shownin Fig. 5.42, is subjected to apull of P =5 kN, at 60° to the vertical. The
cross-section of bracket isrectangular having b = 3t . Determine the dimensions b and t if the stress
in the material of the bracket is limited to 28 MPa. [Ans. 75 mm; 25 mm]

18.

19.

20.

< 120
160
—>| 40
7
60
—{t | |
7 A L _|_ _
I —— — b R —
7R \ '
{30 [=—
|
All dimensions in mm. All dimensions in mm.
Fig. 5.42 Fig. 5.43

A bracket, as shown in Fig. 5.43, isbolted to the framework of a machine which carriesaload P. The
cross-section at 40 mm from the fixed end is rectangular with dimensions, 60 mm x 30 mm. If the
maximum stressis limited to 70 MPa, find the value of P.
[Ans. 3000 N]
A T-section of abeam, as shown in Fig. 5.44, is subjected to avertical shear force of 100 kN. Calcu-
late the shear stress at the neutral axis and at the junction of the web and the
flange. The moment of inertia at the neutral axisis 113.4 x 106 mm*.
[Ans. 11.64 MPa; 11 MPa; 2.76 M Pa]
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All dimensions in mm. All dimensions in mm.
Fig. 5.44 Fig. 5.45

A beam of channel section, asshown in Fig. 5.45, is subjected to avertical shear force of 50 kKN. Find
the ratio of maximum and mean shear stresses. Also draw the distribution of shear stresses.
[Ans. 2.22]

QUESTIONS

Derive arelation for the shear stress developed in a shaft, when it is subjected to torsion.
State the assumptions made in deriving a bending formula.

Contents

Top



®© N oo

Contents

Torsional and Bending Stresses in Machine Parts = 179

Provetherelation: M/l =cly = E/R

where M = Bending moment; | = Moment of inertia; 6 = Bending stressin afibre at adistancey from
the neutral axis; E = Young's modulus; and R = Radius of curvature.

Write the relations used for maximum stress when a machine member is subjected to tensile or com-
pressive stresses along with shearing stresses.

Write short note on maximum shear stress theory verses maximum strain energy theory.
Distinguish clearly between direct stress and bending stress.
What is meant by eccentric loading and eccentricity?

Obtain a relation for the maximum and minimum stresses at the base of a symmetrical column,
when it is subjected to

(a) an eccentric load about one axis, and (b) an eccentric load about two axes.

OBJECTIVE TYPE QUESTIONS

When a machine member is subjected to torsion, the torsional shear stress set up in the member is
(@) zero at both the centroidal axis and outer surface of the member

(b) Maximum at both the centroidal axis and outer surface of the member

(c) zero at the centroidal axisand maximum at the outer surface of the member

(d) none of the above

Thetorsional shear stress on any cross-section normal to the axisis......... the distance from the centre
of the axis.

(a) directly proportional to (b) inversely proportional to

The neutral axis of abeam is subjected to

(@) zerostress (b) maximum tensile stress

() maximum compressive stress (d) maximum shear stress

At the neutral axis of abeam,

(a) thelayers are subjected to maximum bending stress

(b) thelayers are subjected to tension (c) thelayers are subjected to compression
(d) thelayersdo not undergo any strain

The bending stressin a curved beam is

(a) zero at the centroidal axis (b) zero at the point other than centroidal axis
(c) maximum at the neutral axis (d) none of the above

The maximum bending stress, in a curved beam having symmetrical section, always occur, at the
(a) centroidal axis (b) neutral axis

(c) insidefibre (d) outsidefibre

If d = diameter of solid shaft and t = permissible stress in shear for the shaft material, then torsional
strength of shaft iswritten as

@) %d“r (b) dlog,t

© %d3f ) %d"‘r

If d; and d, are the inner and outer diameters of a hollow shaft, then its polar moment of inertiais
(@) 55 (do)*=(0)*] () 55(@0)°~(@)°]

(© 55 (@)~ @)’ (@) 55 do—d)
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9. Two shafts under pure torsion are of identical length and identical weight and are made of same
material. The shaft A is solid and the shaft B is hollow. We can say that

(a) shaft Bis better than shaft A
(b) shaft Ais better than shaft B
(c) both the shafts are equally good
10. A solid shaft transmits atorque T. The allowable shear stressis t. The diameter of the shaft is

o 16T 4327
@ §rt ®) {7t
64T 16T
3 —— 3=

© g (d) .

11.  When amachine member is subjected to atensile stress (c,) due to direct load or bending and a shear
stress (1) due to torsion, then the maximum shear stress induced in the member will be

@ 3[J?+ad] ® 1[J©e)—av]
© [Jo?+ai?] (d) (0)?+47

12. Rankin€'stheory isused for

(@) brittle materials (b) ductile materials
(c) elastic materials (d) plastic materials
13. Guest'stheory is used for
(@) brittle materials (b) ductile materials
(c) elasticmaterias (d) plastic materials
14. At the neutral axisof abeam, the shear stressis
(@) zero (b) maximum
(c) minimum
15. The maximum shear stress developed in a beam of rectangular section is ........ the average shear
stress.
(@) equd to (b) 3 times
() 1.5times
ANSWERS
1. (b 2. (8 3. (@ 4. (d) 5. (b)
6. (¢ 7. (¢ 8. (@ 9. (@ 10. (a)
11. (a) 12. (a) 13. (b) 14. (b) 15. (o)
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